iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/3-540-45757-7_19
Second-Order Quantifier Elimination in Modal Contexts | SpringerLink
Skip to main content

Second-Order Quantifier Elimination in Modal Contexts

  • Conference paper
  • First Online:
Logics in Artificial Intelligence (JELIA 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2424))

Included in the following conference series:

Abstract

Second-order quantifier elimination in the context of classical logic emerged as a powerful technique in many applications, including the correspondence theory, relational databases, deductive and knowledge databases, knowledge representation, commonsense reasoning and approximate reasoning.

In the current paper we generalize the result of [19] by allowing modal operators. This allows us to provide a unifying framework for many applications, that require the use of intensional concepts. Examples of applications of the technique in AI are also provided.

Supported in part by the WITAS project grant under the Wallenberg Foundation, Sweden, KBN grant 8 T11C 009 19 and The College of Economics and Computer Science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Cadoli. Tractable Reasoning in Artificial Intelligence, volume 941 of LNAI. Springer-Verlag, Berlin Heidelberg, 1995.

    MATH  Google Scholar 

  2. P. Doherty, J. Kachniarz, and A. Szałas. Meta-queries on deductive databases. Fundamenta Informaticae, 40(1):17–30, 1999.

    MATH  MathSciNet  Google Scholar 

  3. P. Doherty, J. Kachniarz, and A. Szałas. Using contextually closed queries for local closed-world reasoning in rough knowledge databases. In L. Polkowski and A. Skowron, editors, Rough-Neuro Computing: Techniques for Computing with Words, pages 217–248. Springer-Verlag, 2002.

    Google Scholar 

  4. P. Doherty, W. Łukaszewicz, A. Skowron, and A. Szałas. Combining rough and crisp knowledge in deductive databases. In L. Polkowski and A. Skowron, editors, Rough-Neuro Computing: Techniques for Computing with Words, pages 185–216. Springer-Verlag, 2002.

    Google Scholar 

  5. P. Doherty, W. Łukaszewicz, and A. Szałas. Computing circumscription revisited. Journal of Automated Reasoning, 18(3):297–336, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  6. P. Doherty, W. Łukaszewicz, and A. Szałas. General domain circumscription and its effective reductions. Fundamenta Informaticae, 36(1):23–55, 1998.

    MATH  MathSciNet  Google Scholar 

  7. P. Doherty, W. Łukaszewicz, and A. Szałas. Declarative PTIME queries for relational databases using quantifier elimination. Journal of Logic and Computation, 9(5):739–761, 1999.

    Article  Google Scholar 

  8. P. Doherty, W. Łukaszewicz, and A. Szałas. Efficient reasoning using the local closed-world assumption. In A. Cerri and D. Dochev, editors, Proc. 9th Int. Conference AIMSA 2000, volume 1904 of LNAI, pages 49–58. Springer-Verlag, 2000.

    Google Scholar 

  9. P. Doherty, W. Łukaszewicz, and A. Szałas. Computing strongest necessary and weakest suficient conditions of first-order formulas. International Joint Conference on AI (IJCAI’2001), pages 145–151, 2001.

    Google Scholar 

  10. D. M. Gabbay and H. J. Ohlbach. Quantifier elimination in second-order predicate logic. In B. Nebel, C. Rich, and W. Swartout, editors, Principles of Knowledge representation and reasoning, KR 92, pages 425–435. Morgan Kauffman, 1992.

    Google Scholar 

  11. J.W. Garson. Quantification in modal logic. In D. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic, volume 2, pages 249–307. D. Reidel Pub. Co., 1984.

    Google Scholar 

  12. J. Kachniarz and A. Szałas. On a static approach to verification of integrity constraints in relational databases. In E. Orłowska and A. Szałas, editors, Relational Methods for Computer Science Applications, pages 97–109. Springer Physica-Verlag, 2001.

    Google Scholar 

  13. H. Kautz and B. Selman. Knowledge compilation and theory approximation. Journal of the ACM, 43(2):193–224, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  14. V. Lifschitz. Computing circumscription. In Proc. 9th IJCAI, pages 229–235, Palo Alto, CA, 1985. Morgan Kaufmann.

    Google Scholar 

  15. V. Lifschitz. Circumscription. In D. M. Gabbay, C. J. Hogger, and J. A. Robinson, editors, Handbook of Artificial Intelligence and Logic Programming, volume 3, pages 297–352. Oxford University Press, 1991.

    Google Scholar 

  16. F. Lin. On strongest necessary and weakest suficient conditions. In A.G. Cohn, F. Giunchiglia, and B. Selman, editors, Proc. 7th International Conf. on Principles of Knowledge Representation and Reasoning, KR2000, pages 167–175, San Francisco, Ca., 2000. Morgan Kaufmann Pub., Inc.

    Google Scholar 

  17. J. McCarthy. Approximate objects and approximate theories. In A.G. Cohn, F. Giunchiglia, and B. Selman, editors, Proc. 7th International Conf. on Principles of Knowledge Representation and Reasoning, KR2000, pages 519–526, San Francisco, Ca., 2000. Morgan Kaufmann Pub., Inc.

    Google Scholar 

  18. A. Nonnengart, H.J. Ohlbach, and A. Szałas. Elimination of predicate quantifiers. In H.J. Ohlbach and U. Reyle, editors, Logic, Language and Reasoning. Essays in Honor of Dov Gabbay, Part I, pages 159–181. Kluwer, 1999.

    Google Scholar 

  19. A. Nonnengart and A. Szałas. A fixpoint approach to second-order quantifier elimination with applications to correspondence theory. In E. Orłowska, editor, Logic at Work: Essays Dedicated to the Memory of Helena Rasiowa, volume 24 of Studies in Fuzziness and Soft Computing, pages 307–328. Springer Physica-Verlag, 1998.

    Google Scholar 

  20. H. Simmons. The monotonous elimination of predicate variables. Journal of Logic and Computation, 4:23–68, 1994. (special issue).

    Article  MATH  MathSciNet  Google Scholar 

  21. A. Szałas. On the correspondence between modal and classical logic: An automated approach. Journal of Logic and Computation, 3:605–620, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Szałas. On an automated translation of modal proof rules into formulas of the classical logic. Journal of Applied Non-Classical Logics, 4:119–127, 1994.

    MathSciNet  MATH  Google Scholar 

  23. J. van Benthem. Modal Logic and Classical Logic. Bibliopolis, Naples, 1983.

    Google Scholar 

  24. J. van Benthem. Correspondence theory. In D. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic, volume 2, pages 167–247. D. Reidel Pub. Co., 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Szalas, A. (2002). Second-Order Quantifier Elimination in Modal Contexts. In: Flesca, S., Greco, S., Ianni, G., Leone, N. (eds) Logics in Artificial Intelligence. JELIA 2002. Lecture Notes in Computer Science(), vol 2424. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45757-7_19

Download citation

  • DOI: https://doi.org/10.1007/3-540-45757-7_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44190-8

  • Online ISBN: 978-3-540-45757-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics