Abstract
Blind Source Separation (BSS) is a basic problem in signal processing. In this paper, we present a new method for separating convolutive mixtures based on the minimization of the output mutual information. We also introduce the concept of joint score function, and derive its relationship with marginal score function and independence. The new approach for minimizing the mutual information is very efficient, although limited by multivariate distribution estimations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
J.-F. Cardoso and B. Laheld. Equivariant adaptive source separation. IEEE Trans. on SP, 44(12):3017–3030, December 1996.
N. Charkani. Séparation auto-adaptative de sources pour des mélanges convolutifs. Application à la téléphonie mains-libres dans les voitures. Thèse de l’INP Grenoble, 1996.
P. Comon. Independent component analysis, a new concept? Signal Processing, 36(3):287–314, 1994.
U.A. Lindgren and H. Broman. Source separation using a criterion based on second-order statistics. IEEE Trans. on SP, 5:1837–1850, 1998.
C. Simon. Séparation aveugle des sources en mélange convolutif. PhD thesis, l’université de Marne la Vallée, Novembre 1999. (In French).
A. Taleb and C. Jutten. Entropy optimization, application to blind source separation. In ICANN, pages 529–534, Lausanne, Switzeland, October 1997.
H.L. Nguyen Thi and C. Jutten. Blind sources separation for convolutive mixtures. Signal Processing, 45:209–229, 1995.
S. Van Gerven and D. Van Compernolle. Signal separation by symmetric adaptive decorrelation: Stability, convergence and uniqueness. IEEE Trans. on SP, 43:1602–1612, 1995.
D Yellin and E. Weinstein. Criteria for multichannel signal separation. IEEE Trans. Signal Processing, pages 2158–2168, August 1994.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Babaie-Zadeh, M., Jutten, C., Nayebi, K. (2001). Separating Convolutive Mixtures by Mutual Information Minimization. In: Mira, J., Prieto, A. (eds) Bio-Inspired Applications of Connectionism. IWANN 2001. Lecture Notes in Computer Science, vol 2085. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45723-2_101
Download citation
DOI: https://doi.org/10.1007/3-540-45723-2_101
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42237-2
Online ISBN: 978-3-540-45723-7
eBook Packages: Springer Book Archive