iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/3-540-45723-2_101
Separating Convolutive Mixtures by Mutual Information Minimization | SpringerLink
Skip to main content

Separating Convolutive Mixtures by Mutual Information Minimization

  • Conference paper
  • First Online:
Bio-Inspired Applications of Connectionism (IWANN 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2085))

Included in the following conference series:

Abstract

Blind Source Separation (BSS) is a basic problem in signal processing. In this paper, we present a new method for separating convolutive mixtures based on the minimization of the output mutual information. We also introduce the concept of joint score function, and derive its relationship with marginal score function and independence. The new approach for minimizing the mutual information is very efficient, although limited by multivariate distribution estimations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J.-F. Cardoso and B. Laheld. Equivariant adaptive source separation. IEEE Trans. on SP, 44(12):3017–3030, December 1996.

    Article  Google Scholar 

  2. N. Charkani. Séparation auto-adaptative de sources pour des mélanges convolutifs. Application à la téléphonie mains-libres dans les voitures. Thèse de l’INP Grenoble, 1996.

    Google Scholar 

  3. P. Comon. Independent component analysis, a new concept? Signal Processing, 36(3):287–314, 1994.

    Article  MATH  Google Scholar 

  4. U.A. Lindgren and H. Broman. Source separation using a criterion based on second-order statistics. IEEE Trans. on SP, 5:1837–1850, 1998.

    Article  Google Scholar 

  5. C. Simon. Séparation aveugle des sources en mélange convolutif. PhD thesis, l’université de Marne la Vallée, Novembre 1999. (In French).

    Google Scholar 

  6. A. Taleb and C. Jutten. Entropy optimization, application to blind source separation. In ICANN, pages 529–534, Lausanne, Switzeland, October 1997.

    Google Scholar 

  7. H.L. Nguyen Thi and C. Jutten. Blind sources separation for convolutive mixtures. Signal Processing, 45:209–229, 1995.

    Article  MATH  Google Scholar 

  8. S. Van Gerven and D. Van Compernolle. Signal separation by symmetric adaptive decorrelation: Stability, convergence and uniqueness. IEEE Trans. on SP, 43:1602–1612, 1995.

    Article  Google Scholar 

  9. D Yellin and E. Weinstein. Criteria for multichannel signal separation. IEEE Trans. Signal Processing, pages 2158–2168, August 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Babaie-Zadeh, M., Jutten, C., Nayebi, K. (2001). Separating Convolutive Mixtures by Mutual Information Minimization. In: Mira, J., Prieto, A. (eds) Bio-Inspired Applications of Connectionism. IWANN 2001. Lecture Notes in Computer Science, vol 2085. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45723-2_101

Download citation

  • DOI: https://doi.org/10.1007/3-540-45723-2_101

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42237-2

  • Online ISBN: 978-3-540-45723-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics