iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/3-540-45624-4_3
Design of Differential Space-Time Codes Using Group Theory | SpringerLink
Skip to main content

Design of Differential Space-Time Codes Using Group Theory

  • Conference paper
  • First Online:
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2227))

  • 796 Accesses

Abstract

It is well-known that multiple transmit and receiving antennas can significantly improve the performance of wireless networks. The design of good modulation schemes for the model of multiple antenna wireless transmission in a fast fading environment (e.g., mobile communication) leads to an interesting packing problem for unitary matrices. Surprisingly, the latter problem is related to certain aspects of finite (and infinite) group theory. In this paper we will give a brief survey of some of these connections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. M. Alamouti. A simple transmitter diversity scheme for wireless communications. IEEEJ. Sel. Area Comm., pages 1451–1458, 1998.

    Google Scholar 

  2. Th. Bröcker and T. tom Dieck. Representations of Compact Lie Groups. Number 98 in Graduate Texts in Mathematics. Springer Verlag, New York, 1985.

    Google Scholar 

  3. W. Burnside. On a general property of finite irreducible groups of linear substitutions. Messengerof Mathematics, 35:51–55, 1905.

    Google Scholar 

  4. K. L. Clarkson, W. Sweldens, and A. Zheng. Fast multiple antenna differential decoding.Technical report, Bell Laboratories, Lucent Technologies, October 1999. Downloadable fromhttp://mars.bell-labs.com.

  5. G. J. Foschini. Layered space-time architecture for wireless communication in a fadingenvironment when using multi-element antennas. Bell Labs. Tech. J., 1(2):41–59, 1996.

    Article  Google Scholar 

  6. J. Hamkins and K. Zeger. Asymptotically dense spherical codes. IEEE Trans. Info. Theory,43:1774–1798, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  7. B. Hassibi and M. Khorrami. Fully-diverse multiple-antenna signal constellations and fixed-point-free Lie groups. Submitted to IEEE Trans. Info. Theory. Downloadable from http://mars.bell-labs.com, 2000.

  8. B. Hochwald and W. Sweldens. Differential unitary space time modulation. Technical report,Bell Laboratories, Lucent Technologies, Mar. 1999. Also submitted to IEEE Trans. Comm.Downloadable from http://mars.bell-labs.com

  9. B. M. Hochwald and T. L. Marzetta. Unitary space-time modulation for multiple-antennacommunication in Rayleigh flat-fading. to appear in IEEE Trans. Info. Theory, Mar. 2000.Downloadable from http://mars.bell-labs.com.

  10. B. Hughes. Optimal space-time constellations from groups. Submitted to IEEE Trans. Info.Theory, 2000.

    Google Scholar 

  11. H. Jafarkhani and V. Tarokh. Multiple transmit antenna differential detection from generalizedorthogonal designs. 2000. Preprint, AT&T.

    Google Scholar 

  12. Xue-Bin Liang and Xiang-Gen Xia. Unitary signal constellations for differential space-timemodulation with two transmit antennas: Parametric codes, optimal designs, and bounds. 2001.Preprint.

    Google Scholar 

  13. A. Shokrollahi. Computing the performance of unitary space-time group constellations fromtheir character table. In Proceedings of ISIT 2001, Washington DC, 2001. Preprint downloadablefrom http://mars.bell-labs.com.

  14. A. Shokrollahi. Design of unitary space-time codes from representations of SU(2).In Proceedings of ISIT 2001, Washington DC, 2001. Preprint downloadable from http://mars.bell-labs.com.

  15. A. Shokrollahi. A note on 2-dimensional diagonal space-time codes. In Proceedings ofISIT 2001, Washington DC, 2001. Preprint downloadable from http://mars.belllabs.com.

  16. A. Shokrollahi, B. Hassibi, B. Hochwald, and W. Sweldens. Representation theory for highratemultiple-antenna code design. IEEE Trans. Inform. Theory, 2001. To appear. Preprintdownloadable from http://mars.bell-labs.com.

  17. J. Stilwell. The story of the 120-cell. Notices of the AMS, 48:17–24, 2001.

    Google Scholar 

  18. V. Tarokh, N. Seshadri, and A. R. Calderbank. Space-time codes for high data rate wirelesscommunication: Performance criterion and code construction. IEEE Trans. Info. Theory,44:744–765, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  19. I. E. Telatar. Capacity of multi-antenna gaussian channels. Technical report, Bell Laboratories,Lucent Technologies, 1995.

    Google Scholar 

  20. H. Zassenhaus. Über endliche Fastkörper. Abh. Math. Sem. Hamburg, 11:187–220, 1936.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shokrollahi, A. (2001). Design of Differential Space-Time Codes Using Group Theory. In: BoztaÅŸ, S., Shparlinski, I.E. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 2001. Lecture Notes in Computer Science, vol 2227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45624-4_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-45624-4_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42911-1

  • Online ISBN: 978-3-540-45624-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics