iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/3-540-45357-1_8
Discovery of Frequent Tree Structured Patterns in Semistructured Web Documents | SpringerLink
Skip to main content

Discovery of Frequent Tree Structured Patterns in Semistructured Web Documents

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2035))

Included in the following conference series:

Abstract

Many documents such as Web documents or XML files have no rigid structure. Such semistructured documents have been rapidly increasing. We propose a new method for discovering frequent tree structured patterns in semistructured Web documents. We consider the data mining problem of finding all maximally frequent tag tree patterns in semistructured data such as Web documents. A tag tree pattern is an edge labeled tree which has hyperedges as variables. An edge label is a tag or a keyword in Web documents, and a variable can be substituted by any tree. So a tag tree pattern is suited for representing tree structured patterns in semistructured Web documents. We present an algorithm for finding all maximally frequent tag tree patterns. Also we report some experimental results on XML documents by using our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to Semistructured Data and XML. Morgan Kaufmann, 2000.

    Google Scholar 

  2. T. Beyer and S. Hedetniemi. Constant time generation of rooted trees. SIAM J. Comput., 9:706–712, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Fernandez and Suciu D. Optimizing regular path expressions using graph schemas. Proc. Intl. Conf. on Data Engineering (ICDE-98), pages 14–23, 1998.

    Google Scholar 

  4. T. Miyahara, T. Shoudai, T. Uchida, K. Takahashi, and H. Ueda. Polynomial time matching algorithms for tree-like structured patterns in knowledge discovery. Proc. PAKDD-2000, Springer-Verlag, LNAI 1805, pages 5–16, 2000.

    Google Scholar 

  5. T. Miyahara, T. Uchida, T. Kuboyama, T. Yamamoto, K. Takahashi, and H. Ueda. KD-FGS: a knowledge discovery system from graph data using formal graph system. Proc. PAKDD-99, Springer-Verlag, LNAI 1574, pages 438–442, 1999.

    Google Scholar 

  6. T. Miyahara, T. Shoudai and T. Uchida. Discovery of maximally frequent tag tree patterns in semistructured data. Proc. LA Winter Symposium, Kyoto, pages 15-1–15-10, 2001.

    Google Scholar 

  7. S. Nestorov, S. Abiteboul, and R. Motwani. Extracting schema from semistructured data. Proc. ACM SIGMOD Conf., pages 295–306, 1998.

    Google Scholar 

  8. T. Shoudai, T. Miyahara, T. Uchida, and S. Matsumoto. Inductive inference of regular term tree languages and its application to knowledge discovery. Information Modelling and Knowledge Base XI, IOS Press, pages 85–102, 2000.

    Google Scholar 

  9. T. Uchida, T. Shoudai, and S. Miyano. Parallel algorithm for refutation tree problem on formal graph systems. IEICE Trans. Inf. Syst., E78-D(2):99–112, 1995.

    Google Scholar 

  10. K. Wang and H. Liu. Discovering structural association of semistructured data. IEEE Trans. Knowledge and Data Engineering, 12:353–371, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Miyahara, T., Shoudai, T., Uchida, T., Takahashi, K., Ueda, H. (2001). Discovery of Frequent Tree Structured Patterns in Semistructured Web Documents. In: Cheung, D., Williams, G.J., Li, Q. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2001. Lecture Notes in Computer Science(), vol 2035. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45357-1_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-45357-1_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41910-5

  • Online ISBN: 978-3-540-45357-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics