iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/3-540-45349-0_13
New Tractable Classes from Old | SpringerLink
Skip to main content

New Tractable Classes from Old

  • Conference paper
  • First Online:
Principles and Practice of Constraint Programming – CP 2000 (CP 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1894))

Abstract

Many combinatorial problems can be naturally expressed as “constraint satisfaction problems”. This class of problems is known to be NP-hard in general, but a number of restrictions of the general problem have been identified which ensure tractability. This paper introduces a method of combining two or more tractable classes over disjoint domains, in order to synthesise larger, more expressive tractable classes. We demonstrate that the classes so obtained are genuinely novel, and have not been previously identified. In addition, we use algebraic techniques to extend the tractable classes which we identify, and to show that the algorithms for solving these extended classes can be less than obvious.

Supported by an EPSRC grant, number GR/M12926.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Bjäreland and P. Jonsson. Exploiting bipartiteness to identify yet another tractable subclass of CSP. In J. Jaffar, editor, Principles and Practice of Constraint Programming-CP’99, number 1713 in Lecture Notes in Computer Science, pages 118–128. Springer, 1999.

    Google Scholar 

  2. A. A. Bulatov, A. A. Krokhin, and P. Jeavons. Constraint satisfaction problems and finite algebras. Technical Report TR-4-99, Oxford University Computing Laboratory, 1999.

    Google Scholar 

  3. A. A. Bulatov, A. A. Krokhin, and P. Jeavons. Constraints over a three-element domain: tractable maximal relational clones. Unpublished Manuscript, 1999.

    Google Scholar 

  4. D. Cohen, P. Jeavons, and M. Koubarakis. Tractable disjunctive constraints. In Proceedings 3rd International Conference on Constraint Programming-CP’96 (Linz, October 1997), volume 1330 of Lecture Notes in Computer Science, pages 478–490. Springer-Verlag, 1996.

    Google Scholar 

  5. P. Cohn. Universal Algebra. Herper & Row, 1965.

    Google Scholar 

  6. M. Cooper, D. Cohen, and P. Jeavons. Characterising tractable constraints. Artificial Intelligence, 65:347–361, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  7. V. Dalmau. A new tractable class of constraint satisfaction problems. In 6th International Symposium on Mathematics and Artificial Intelligence, 2000.

    Google Scholar 

  8. V. Dalmau and J. Pearson. Closure functions and width 1 problmes. In J. Jaffar, editor, Principles and Practice of Constraint Programming-CP’99, number 1713 in Lecture Notes in Computer Science, pages 159–173. Springer, 1999.

    Google Scholar 

  9. R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial Intelligence, 38:353–366, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  10. E. Freuder. A sufficient condition for backtrack-bounded search. Journal of the ACM, 32:755–761, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco, CA., 1979.

    MATH  Google Scholar 

  12. P. Jeavons. On the algebraic structure of combinatorial problems. Theoretical Computer Science, 200:185–204, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  13. P. Jeavons and D. Cohen. An algebraic characterization of tractable constraints. In Computing and Combinatorics. First International Conference COCOON’95 (Xi’an, China, August 1995), volume 959 of Lecture Notes in Computer Science, pages 633–642. Springer-Verlag, 1995.

    Google Scholar 

  14. P. Jeavons, D. Cohen, and M. Gyssens. A unifying framework for tractable constraints. In Proceedings 1st International Conference on Constraint Programming-CP’95 (Cassis, France, September 1995), volume 976 of Lecture Notes in Computer Science, pages 276–291. Springer-Verlag, 1995.

    Google Scholar 

  15. P. Jeavons, D. Cohen, and M. Gyssens. A test for tractability. In Proceedings 2nd International Conference on Constraint Programming-CP’96 (Boston, August 1996), volume 1118 of Lecture Notes in Computer Science, pages 267–281. Springer-Verlag, 1996.

    Google Scholar 

  16. P. Jeavons, D. Cohen, and M. Gyssens. Closure properties of constraints. Journal of the ACM, 44:527–548, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  17. P. Jeavons and M. Cooper. Tractable constraints on ordered domains. Artificial Intelligence, 79(2):327–339, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  18. L. Kirousis. Fast parallel constraint satisfaction. Artificial Intelligence, 64:147–160, 1993.

    Article  MATH  Google Scholar 

  19. P. Ladkin and R. Maddux. On binary constraint problems. Journal of the ACM, 41:435–469, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  20. A. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8:99–118, 1977.

    Article  MATH  Google Scholar 

  21. R. McKenzie, G. McNulty, and W. Taylor. Algebras, Lattices and Varieties, volume I. Wadsworth and Brooks, California, 1987.

    Google Scholar 

  22. U. Montanari. Networks of constraints: Fundamental properties and applications to picture processing. Information Sciences, 7:95–132, 1974.

    Article  MathSciNet  Google Scholar 

  23. B. Nebel and H.-J. Burckert. Reasoning about temporal relations: a maximal tractable subclass of Allen’s interval algebra. Journal of the ACM, 42:43–66, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  24. T. Schaefer. The complexity of satisfiability problems. In Proceedings 10th ACM Symposium on Theory of Computing (STOC), pages 216–226, 1978.

    Google Scholar 

  25. P. van Beek and R. Dechter. On the minimality and decomposability of row-convex constraint networks. Journal of the ACM, 42:543–561, 1995.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cohen, D., Jeavons, P., Gault, R. (2000). New Tractable Classes from Old. In: Dechter, R. (eds) Principles and Practice of Constraint Programming – CP 2000. CP 2000. Lecture Notes in Computer Science, vol 1894. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45349-0_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-45349-0_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41053-9

  • Online ISBN: 978-3-540-45349-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics