Abstract
In the framework of an evolutionary approach to machine learning, this paper presents the preliminary version of a learning system that uses Genetic Programming as a tool for automatically inferring the set of classification rules to be used by a hierarchical handwritten character recognition system. In this context, the aim of the learning system is that of producing a set of rules able to group character shapes, described by using structural features, into super-classes, each corresponding to one or more actual classes. In particular, the paper illustrates the structure of the classification rules and the grammar used to generate them, the genetic operators devised to manipulate the set of rules and the fitness function used to match the current set of rules against the sample of the training set. The experimental results obtained by using a set of 5,000 digits randomly extracted from the NIST database are eventually reported and discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Fukunaga, K.; Narendra, P. M. 1975. A Branch and Bound Algorithm for Computing K‐Nearest Neighbors. IEEE Trans. on Computers C-24:750–753.
Marcelli, A.; Pavlidis, T. 1994. Using Projections for Preclassification of Character Shape. In Document Recognition. L.M. Vincent, T. Pavlidis (eds.), Los Angeles: SPIE, 2181:4–13.
Marcelli, A.; Likhareva, N.; Pavlidis, T. 1997. Structural Indexing for Character Recognition. Computer Vision and Image Understanding, 67(1): 330–346.
Mori, S.; Yamamoto, k.; Yasuda, M. 1984. Research on Machine Recognition od Handprinted Characters. IEEE Trans. on PAMI, PAMI-6: 386–405.
De Stefano, C.; Della Cioppa, A.; and Marcelli, A. 1999. Handwritten numerals recognition by means of evolutionary algorithms. In Proc. of the 3th Int. Conf. on Document Analysis and Recognition, 804–807.
Koza, J. R. 1992. Genetic Programming: On the Programming of Computers by Natural Selection. Cambridge, MA: MIT Press.
Koza, J. R. 1994. Genetic Programming II: Automatic Discovery of Reusable Programs. Cambridge, MA: MIT Press.
Boccignone, G. 1990. Using skeletons for OCR. V. Cantoni et al. eds., Progress in Image Analysis and Processing, 235–282.
Cordella, L. P.; De Stefano, C.; and Vento, M. 1995. Neural network classifier for OCR using structural descriptions. Machine Vision and Applications 8(5):336–342.
Goldberg, D. E. 1989. Genetic algorithms in search, optimization, and machine learning. Reading, MA: Addison‐Wesley.
Deb, K., and Goldberg, D. E. 1989. An investigation of niche and species formation in genetic function optimization. In Schaffer, J. D., ed., Proc. of the 3th Int. Conf. on Genetic Algorithms, 42–50. San Mateo, CA: Morgan Kaufmann.
Mahfoud, S. 1994. Genetic drift in sharing methods. In Proceedings of the First IEEE Conference on Evolutionary Computation, 67–72.
Booker, L. B.; Goldberg, D. E.; and Holland, J. H. 1989. Classifier Systems and Genetic Algorithms. In Artificial Intelligence, volume 40. 235–282.
Forrest, S.; Javornik, B.; Smith, R. E.; and Perelson, A. S. 1993. Using genetic algorithms to explore pattern recognition in the immune system. Evolutionary Computation 1(3):191–211.
Horn, J.; Goldberg, D. E.; and Deb, K. 1994. Implicit Niching in a Learning Classifier System: Nature’s Way. Evolutionary Computation 2(1):37–66.
Baker, J. E. 1987. Reducing bias and ineciency in the selection algorithm. In Grefenstette, J. J., ed., Genetic algorithms and their applications: Proc. of the 2th Int. Conf. on Genetic Algorithms, 14–21. Hillsdale, NJ: Lawrence Erlbaum Assoc.
Li, M.; Vitányi, P. 1997. An Introduction to Kolmogorov Complexity and its Applications. Series: Graduate text in computer Science. Springer-Verlag, New York.
Conte, M.; De Falco, I.; Della Cioppa, A.; Tarantino, E.; and Trautteur, G. 1997. Genetic Programming Estimates of Kolmogorov Complexity. Proc. of the Seventh Int. Conf. on Genetic Algorithms (ICGA’97), 743–750. Morgan‐Kaufmann.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
De Stefano, C., Della Cioppa, A., Marcelli, A., Matarazzo, F. (2001). Grouping Character Shapes by Means of Genetic Programming. In: Arcelli, C., Cordella, L.P., di Baja, G.S. (eds) Visual Form 2001. IWVF 2001. Lecture Notes in Computer Science, vol 2059. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45129-3_46
Download citation
DOI: https://doi.org/10.1007/3-540-45129-3_46
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42120-7
Online ISBN: 978-3-540-45129-7
eBook Packages: Springer Book Archive