iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/3-540-45105-6_90
Ant-Based Crossover for Permutation Problems | SpringerLink
Skip to main content

Ant-Based Crossover for Permutation Problems

  • Conference paper
  • First Online:
Genetic and Evolutionary Computation — GECCO 2003 (GECCO 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2723))

Included in the following conference series:

Abstract

Crossover for evolutionary algorithms applied to permutation problems is a difficult and widely discussed topic. In this paper we use ideas from ant colony optimization to design a new permutation crossover operator. One of the advantages of the new crossover operator is the ease to introduce problem specific heuristic knowledge. Empirical tests on a travelling salesperson problem show that the new crossover operator yields excellent results and significantly outperforms evolutionary algorithms with edge recombination operator as well as pure ant colony optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. C. Bean. Genetic algorithms and random keys for sequencing and optimization. ORSA Journal on Computing, 6(2):154–160, 1994.

    MATH  Google Scholar 

  2. C. Bierwirth, D.C. Mattfeld, and H. Kopfer. On permutation representations for scheduling problems. In H.-M. Voigt, editor, Parallel Problem Solving from Nature, volume 1141 of LNCS, pages 310–318. Springer, Berlin, 1996.

    Chapter  Google Scholar 

  3. E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm intelligence: from natural to artificial systems. Oxford University Press, 1999.

    Google Scholar 

  4. H. M. Botee and E. Bonabeau. Evolving ant colonies. Advanced Complex Systems, 1:149–159, 1998.

    Article  Google Scholar 

  5. L. Davis. Applying adaptive algorithms to epistatic domains. In International Joint Conference on Artificial Intelligence, pages 162–164, 1985.

    Google Scholar 

  6. M. Dorigo and G. Di Caro. The ant colony optimization meta-heuristic. In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages 11–32. McGraw-Hill, 1999.

    Google Scholar 

  7. B. Freisleben and P. Merz. New genetic local search operators for the traveling salesman problem. In Hans-Michael Voigt, Werner Ebeling, Ingo Rechenberg, and Hans-Paul Schwefel, editors, Parallel Problem Solving from Nature, volume 1141, pages 890–899, Berlin, 1996. Springer.

    Google Scholar 

  8. D. E. Goldberg and R. Lingle. Alleles, loci, and the TSP. In J. J. Grefenstette, editor, First International Conference on Genetic Algorithms, pages 154–159. Lawrence Erlbaum Associates, 1985.

    Google Scholar 

  9. J. J. Grefenstette. Incorporating problem specific knowledge into genetic algorithms. In Genetic Algorithms and Simulated Annealing, pages 42–60. Morgan Kaufmann, 1987.

    Google Scholar 

  10. M. Guntsch and M. Middendorf. A population based approach for ACO. In European Workshop on Evolutionary Computation in Combinatorial Optimization, volume 2279 of LNCS, pages 72–81. Springer, 2002.

    Google Scholar 

  11. B. A. Julstrom and G. R. Raidl. Weight-biased edge-crossover in evolutionary algorithms for two graph problems. In G. Lamont, J. Carroll, H. Haddad, D. Morton, G. Papadopoulos, R. Sincovec, and A. Yfantis, editors, 16th ACM Symposium on Applied Computing, pages 321–326. ACM Press, 2001.

    Google Scholar 

  12. S. Jung and B.-R. Moon. Toward minimal restriction of genetic encoding and crossovers for the two-dimensional Euclidean TSP. IEEE Transactions on Evolutionary Computation, 6(6):557–565, 2002.

    Article  Google Scholar 

  13. V. V. Miagkikh and W. F. Punch. An approach to solving combinatorial optimization problems using a population of reinforcement learning agents. In Genetic and Evolutionary Computation Conference, pages 1358–1365, 1999.

    Google Scholar 

  14. V. V. Miagkikh and W. F. Punch. A generalized approach to handling parameter interdependencies in probabilistic modeling and reinforcement learning optimization algorithms. In Workshop on Frontiers in Evolutionary Algorithms, 2000.

    Google Scholar 

  15. Y. Nagata and S. Kobayashi. Edge assembly crossover: A high-power genetic algorithm for the traveling salesman problem. In T. Bäck, editor, International Conference on Genetic Algorithms, pages 450–457. Morgan Kaufmann, 1997.

    Google Scholar 

  16. G. Reinelt. TSPLIB-a travelling salesman problem library. ORSA Journal on Computing, 3:376–384, 1991.

    MATH  Google Scholar 

  17. A.Y.-C. Tang and K.-S. Leung. A modified edge recombination operator for the travelling salesman problem. In Parallel Problem Solving from Nature II, volume 866 of LNCS, pages 180–188, Berlin, 1994. Springer.

    Google Scholar 

  18. G. Tao and Z. Michalewicz. Evolutionary algorithms for the TSP. In A. E. Eiben, T. Bäck, M. Schoenauer, and H.-P. Schwefel, editors, Parallel Problem Solving from Nature, volume 1498 of LNCS, pages 803–812. Springer, 1998.

    Chapter  Google Scholar 

  19. http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/ index.html.

    Google Scholar 

  20. D. Whitley, T. Starkweather, and D’A. Fuquay. Scheduling problems and traveling salesman: The genetic edge recombination operator. In J. Schaffer, editor, International Conference on Genetic Algorithms, pages 133–140. Morgan Kaufmann, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Branke, J., Barz, C., Behrens, I. (2003). Ant-Based Crossover for Permutation Problems. In: Cantú-Paz, E., et al. Genetic and Evolutionary Computation — GECCO 2003. GECCO 2003. Lecture Notes in Computer Science, vol 2723. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45105-6_90

Download citation

  • DOI: https://doi.org/10.1007/3-540-45105-6_90

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40602-0

  • Online ISBN: 978-3-540-45105-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics