iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/3-540-44683-4_3
Playing Games with Algorithms: Algorithmic Combinatorial Game Theory | SpringerLink
Skip to main content

Playing Games with Algorithms: Algorithmic Combinatorial Game Theory

  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 2001 (MFCS 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2136))

Abstract

Combinatorial games lead to several interesting, clean problems in algorithms and complexity theory, many of which remain open. The purpose of this paper is to provide an overview of the area to encourage further research. In particular, we begin with general background in combinatorial game theory, which analyzes ideal play in perfect-information games. Then we survey results about the complexity of determining ideal play in these games, and the related problems of solving puzzles, in terms of both polynomial-time algorithms and computational intractability results. Our review of background and survey of algorithmic results are by no means complete, but should serve as a useful primer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. E. Berlekamp. The Dots and Boxes Game: Sophisticated Child’s Play. A. K. Peter’s Ltd., 2000.

    Google Scholar 

  2. E. Berlekamp and D. Wolfe. Mathematical Go: Chilling Gets the Last Point. A. K. Peters, Ltd., 1994.

    Google Scholar 

  3. E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways. Academic Press, London, 1982.

    MATH  Google Scholar 

  4. T. C. Biedl, E. D. Demaine, M. L. Demaine, R. Fleischer, L. Jacobsen, and J. I. Munro. The complexity of Clickomania. In R. J. Nowakowski, ed., More Games of No Chance, 2001. To appear.

    Google Scholar 

  5. C. L. Bouton. Nim, a game with a complete mathematical theory. Ann. of Math. (2), 3:35–39, 1901-02.

    Article  MathSciNet  Google Scholar 

  6. D. Bremner, J. O’Rourke, and T. Shermer. Motion planning amidst movable square blocks is PSPACE complete. Draft, June 1994.

    Google Scholar 

  7. M. Buro. Simple Amazons endgames and their connection to Hamilton circuits in cubic subgrid graphs. In Proc. 2nd Internat. Conf. Computers and Games, 2000.

    Google Scholar 

  8. J. H. Conway. On Numbers and Games. Academic Press, London, 1976.

    MATH  Google Scholar 

  9. J. H. Conway. The angel problem. In R. J. Nowakowski, ed., Games of No Chance, pp. 1–12. Cambridge University Press, 1996.

    Google Scholar 

  10. J. Culberson. Sokoban is PSPACE-complete. In Proc. Internat. Conf. Fun with Algorithms, pp. 65–76, Elba, Italy, June 1998.

    Google Scholar 

  11. S. de Vries and R. Vohra. Combinatorial auctions: A survey. Manuscript, Jan. 2001. http://www-m9.ma.tum.de/~devries/combauctionsupplement/comauction.pdf.

  12. E. D. Demaine. Playing games with algorithms: Algorithmic combinatorial game theory. Preprint cs.CC/0106019, Computing Research Repository. http://www.arXiv.org/abs/cs.CC/0106019.

  13. E. D. Demaine, M. L. Demaine, and D. Eppstein. Phutball endgames are NP-hard. In R. J. Nowakowski, ed., More Games of No Chance, 2001. To appear. http://www.arXiv.org/abs/cs.CC/0008025.

  14. E. D. Demaine, M. L. Demaine, and J. O’Rourke. PushPush and Push-1 are NP-hard in 2D. In Proc. 12th Canadian Conf. Comput. Geom., pp. 211–219, 2000. http://www.cs.unb.ca/conf/cccg/eProceedings/26.ps.gz.

  15. E. D. Demaine, M. L. Demaine, and H. Verrill. Coin-moving puzzles. In MSRI Combinatorial Game Theory Research Workshop, Berkeley, California, July 2000.

    Google Scholar 

  16. E. D. Demaine and M. Hoffmann. Pushing blocks is NP-complete for noncrossing solution paths. In Proc. 13th Canadian Conf. Comput. Geom., 2001. To appear.

    Google Scholar 

  17. A. Dhagat and J. O’Rourke. Motion planning amidst movable square blocks. In Proc. 4th Canadian Conf. Comput. Geome., pp. 188–191, 1992.

    Google Scholar 

  18. D. Eppstein. Computational complexity of games and puzzles. http://www.ics.uci.edu/~eppstein/cgt/hard.html.

  19. J. Erickson. New Toads and Frogs results. In R. J. Nowakowski, ed., Games of No Chance, pp. 299–310. Cambridge University Press, 1996.

    Google Scholar 

  20. G. W. Flake and E. B. Baum. Rush Hour is PSPACE-complete, or “Why you should generously tip parking lot attendants”. Manuscript, 2001. http://www.neci.nj.nec.com/homepages/flake/rushhour.ps.

  21. A. S. Fraenkel. Combinatorial games: Selected bibliography with a succinct gourmet introduction. Electronic Journal of Combinatorics, 1994. Dynamic Survey DS2, http://www.combinatorics.org/Surveys/.

  22. A. S. Fraenkel, M. R. Garey, D. S. Johnson, T. Schaefer, and Y. Yesha. The complexity of checkers on an N × N board-preliminary report. In Proc. 19th IEEE Sympos. Found. Comp. Sci., pp. 55–64, 1978.

    Google Scholar 

  23. A. S. Fraenkel and D. Lichtenstein. Computing a perfect strategy for n × n chess requires time exponential in n. J. Combin. Theory Ser. A, 31:199–214, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  24. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., 1979.

    Google Scholar 

  25. P. M. Grundy. Mathematics and games. Eureka, 2:6–8, Oct. 1939.

    Google Scholar 

  26. R. K. Guy. Unsolved problems in combinatorial games. In R. J. Nowakowski, ed., Games of No Chance, pp. 475–491. Cambridge University Press, 1996.

    Google Scholar 

  27. R. K. Guy and C. A. B. Smith. The G-values of various games. Proc. Cambridge Philos. Soc., 52:514–526, 1956.

    Article  MATH  MathSciNet  Google Scholar 

  28. M. Hoffmann. Push-* is NP-hard. In Proc. 12th Canadian Conf. Comput. Geom., pp. 205–210, 2000. http://www.cs.unb.ca/conf/cccg/eProceedings/13.ps.gz.

  29. E. Hordern. Sliding Piece Puzzles. Oxford University Press, 1986.

    Google Scholar 

  30. R. Kaye. Minesweeper is NP-complete. Math. Intelligencer, 22(2):9–15, 2000.

    MATH  MathSciNet  Google Scholar 

  31. M. Lachmann, C. Moore, and I. Rapaport. Who wins domineering on rectangular boards? In MSRI Combinatorial Game Theory Research Workshop, Berkeley, California, July 2000.

    Google Scholar 

  32. D. Lichtenstein and M. Sipser. GO is polynomial-space hard. J. Assoc. Comput. Mach., 27(2):393–401, Apr. 1980.

    Google Scholar 

  33. C. H. Papadimitriou. Algorithms, games, and the Internet. In Proc. 33rd ACM Sympos. Theory Comput., Crete, Greece, July 2001.

    Google Scholar 

  34. D. Ratner and M. Warmuth. The (n 2-1)-puzzle and related relocation problems. J. Symbolic Comput., 10:111–137, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  35. S. Reisch. Hex ist PSPACE-vollständig. Acta Inform., 15:167–191, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  36. J. M. Robson. The complexity of Go. In Proceedings of the IFIP 9th World Computer Congress on Information Processing, pp. 413–417, 1983.

    Google Scholar 

  37. J. M. Robson. N by N Checkers is EXPTIME complete. SIAM J. Comput. 13(2):252–267, May 1984.

    Google Scholar 

  38. C. A. B. Smith. Graphs and composite games. J. Combin. Theory, 1:51–81, 1966.

    Article  MATH  Google Scholar 

  39. R. Sprague. Über mathematische Kampfspiele. Tohoku Mathematical Journal, 41:438–444, 1935-36.

    Google Scholar 

  40. G. Wilfong. Motion planning in the presence of movable obstacles. Ann. Math. Artificial Intelligence, 3(1):131–150, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  41. D. Wolfe. Go endgames are PSPACE-hard. In R. J. Nowakowski, ed., More Games of No Chance, 2001. To appear.

    Google Scholar 

  42. S. Wolfram. Cellular Automata and Complexity: Collected Papers. Perseus Press, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Demaine, E.D. (2001). Playing Games with Algorithms: Algorithmic Combinatorial Game Theory. In: Sgall, J., Pultr, A., Kolman, P. (eds) Mathematical Foundations of Computer Science 2001. MFCS 2001. Lecture Notes in Computer Science, vol 2136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44683-4_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-44683-4_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42496-3

  • Online ISBN: 978-3-540-44683-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics