Abstract
Combinatorial games lead to several interesting, clean problems in algorithms and complexity theory, many of which remain open. The purpose of this paper is to provide an overview of the area to encourage further research. In particular, we begin with general background in combinatorial game theory, which analyzes ideal play in perfect-information games. Then we survey results about the complexity of determining ideal play in these games, and the related problems of solving puzzles, in terms of both polynomial-time algorithms and computational intractability results. Our review of background and survey of algorithmic results are by no means complete, but should serve as a useful primer.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
E. Berlekamp. The Dots and Boxes Game: Sophisticated Child’s Play. A. K. Peter’s Ltd., 2000.
E. Berlekamp and D. Wolfe. Mathematical Go: Chilling Gets the Last Point. A. K. Peters, Ltd., 1994.
E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways. Academic Press, London, 1982.
T. C. Biedl, E. D. Demaine, M. L. Demaine, R. Fleischer, L. Jacobsen, and J. I. Munro. The complexity of Clickomania. In R. J. Nowakowski, ed., More Games of No Chance, 2001. To appear.
C. L. Bouton. Nim, a game with a complete mathematical theory. Ann. of Math. (2), 3:35–39, 1901-02.
D. Bremner, J. O’Rourke, and T. Shermer. Motion planning amidst movable square blocks is PSPACE complete. Draft, June 1994.
M. Buro. Simple Amazons endgames and their connection to Hamilton circuits in cubic subgrid graphs. In Proc. 2nd Internat. Conf. Computers and Games, 2000.
J. H. Conway. On Numbers and Games. Academic Press, London, 1976.
J. H. Conway. The angel problem. In R. J. Nowakowski, ed., Games of No Chance, pp. 1–12. Cambridge University Press, 1996.
J. Culberson. Sokoban is PSPACE-complete. In Proc. Internat. Conf. Fun with Algorithms, pp. 65–76, Elba, Italy, June 1998.
S. de Vries and R. Vohra. Combinatorial auctions: A survey. Manuscript, Jan. 2001. http://www-m9.ma.tum.de/~devries/combauctionsupplement/comauction.pdf.
E. D. Demaine. Playing games with algorithms: Algorithmic combinatorial game theory. Preprint cs.CC/0106019, Computing Research Repository. http://www.arXiv.org/abs/cs.CC/0106019.
E. D. Demaine, M. L. Demaine, and D. Eppstein. Phutball endgames are NP-hard. In R. J. Nowakowski, ed., More Games of No Chance, 2001. To appear. http://www.arXiv.org/abs/cs.CC/0008025.
E. D. Demaine, M. L. Demaine, and J. O’Rourke. PushPush and Push-1 are NP-hard in 2D. In Proc. 12th Canadian Conf. Comput. Geom., pp. 211–219, 2000. http://www.cs.unb.ca/conf/cccg/eProceedings/26.ps.gz.
E. D. Demaine, M. L. Demaine, and H. Verrill. Coin-moving puzzles. In MSRI Combinatorial Game Theory Research Workshop, Berkeley, California, July 2000.
E. D. Demaine and M. Hoffmann. Pushing blocks is NP-complete for noncrossing solution paths. In Proc. 13th Canadian Conf. Comput. Geom., 2001. To appear.
A. Dhagat and J. O’Rourke. Motion planning amidst movable square blocks. In Proc. 4th Canadian Conf. Comput. Geome., pp. 188–191, 1992.
D. Eppstein. Computational complexity of games and puzzles. http://www.ics.uci.edu/~eppstein/cgt/hard.html.
J. Erickson. New Toads and Frogs results. In R. J. Nowakowski, ed., Games of No Chance, pp. 299–310. Cambridge University Press, 1996.
G. W. Flake and E. B. Baum. Rush Hour is PSPACE-complete, or “Why you should generously tip parking lot attendants”. Manuscript, 2001. http://www.neci.nj.nec.com/homepages/flake/rushhour.ps.
A. S. Fraenkel. Combinatorial games: Selected bibliography with a succinct gourmet introduction. Electronic Journal of Combinatorics, 1994. Dynamic Survey DS2, http://www.combinatorics.org/Surveys/.
A. S. Fraenkel, M. R. Garey, D. S. Johnson, T. Schaefer, and Y. Yesha. The complexity of checkers on an N × N board-preliminary report. In Proc. 19th IEEE Sympos. Found. Comp. Sci., pp. 55–64, 1978.
A. S. Fraenkel and D. Lichtenstein. Computing a perfect strategy for n × n chess requires time exponential in n. J. Combin. Theory Ser. A, 31:199–214, 1981.
M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., 1979.
P. M. Grundy. Mathematics and games. Eureka, 2:6–8, Oct. 1939.
R. K. Guy. Unsolved problems in combinatorial games. In R. J. Nowakowski, ed., Games of No Chance, pp. 475–491. Cambridge University Press, 1996.
R. K. Guy and C. A. B. Smith. The G-values of various games. Proc. Cambridge Philos. Soc., 52:514–526, 1956.
M. Hoffmann. Push-* is NP-hard. In Proc. 12th Canadian Conf. Comput. Geom., pp. 205–210, 2000. http://www.cs.unb.ca/conf/cccg/eProceedings/13.ps.gz.
E. Hordern. Sliding Piece Puzzles. Oxford University Press, 1986.
R. Kaye. Minesweeper is NP-complete. Math. Intelligencer, 22(2):9–15, 2000.
M. Lachmann, C. Moore, and I. Rapaport. Who wins domineering on rectangular boards? In MSRI Combinatorial Game Theory Research Workshop, Berkeley, California, July 2000.
D. Lichtenstein and M. Sipser. GO is polynomial-space hard. J. Assoc. Comput. Mach., 27(2):393–401, Apr. 1980.
C. H. Papadimitriou. Algorithms, games, and the Internet. In Proc. 33rd ACM Sympos. Theory Comput., Crete, Greece, July 2001.
D. Ratner and M. Warmuth. The (n 2-1)-puzzle and related relocation problems. J. Symbolic Comput., 10:111–137, 1990.
S. Reisch. Hex ist PSPACE-vollständig. Acta Inform., 15:167–191, 1981.
J. M. Robson. The complexity of Go. In Proceedings of the IFIP 9th World Computer Congress on Information Processing, pp. 413–417, 1983.
J. M. Robson. N by N Checkers is EXPTIME complete. SIAM J. Comput. 13(2):252–267, May 1984.
C. A. B. Smith. Graphs and composite games. J. Combin. Theory, 1:51–81, 1966.
R. Sprague. Über mathematische Kampfspiele. Tohoku Mathematical Journal, 41:438–444, 1935-36.
G. Wilfong. Motion planning in the presence of movable obstacles. Ann. Math. Artificial Intelligence, 3(1):131–150, 1991.
D. Wolfe. Go endgames are PSPACE-hard. In R. J. Nowakowski, ed., More Games of No Chance, 2001. To appear.
S. Wolfram. Cellular Automata and Complexity: Collected Papers. Perseus Press, 1994.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Demaine, E.D. (2001). Playing Games with Algorithms: Algorithmic Combinatorial Game Theory. In: Sgall, J., Pultr, A., Kolman, P. (eds) Mathematical Foundations of Computer Science 2001. MFCS 2001. Lecture Notes in Computer Science, vol 2136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44683-4_3
Download citation
DOI: https://doi.org/10.1007/3-540-44683-4_3
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42496-3
Online ISBN: 978-3-540-44683-5
eBook Packages: Springer Book Archive