iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/3-540-30773-7_7
Rotavirus Proteins: Structure and Assembly | SpringerLink
Skip to main content

Rotavirus Proteins: Structure and Assembly

  • Chapter
Reoviruses: Entry, Assembly and Morphogenesis

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 309))

Abstract

Rotavirus is a major pathogen of infantile gastroenteritis. It is a large and complex virus with a multilayered capsid organization that integrates the deter minants of host specificity, cell entry, and the enzymatic functions necessary for endogenous transcription of the genome that consists of 11 dsRNA segments. These segments encode six structural and six nonstructural proteins. In the last few years, there has been substantial progress in our understanding of both the structural and functional aspects of a variety of molecular processes involved in the replication of this virus. Studies leading to this progress using of a variety of structural and biochemical techniques including the recent application of RNA interference technology have uncovered several unique and intriguing features related to viral morphogenesis. This review focuses on our current understanding of the structural basis of the molecular processes that govern the replication of rotavirus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Afrikanova I, Miozzo MC, Giambiagi S, Burrone O (1996) Phosphorylation generates different forms of rotavirus NSP5. J Gen Virol 77:2059–2065

    PubMed  CAS  Google Scholar 

  • Afrikanova I, Fabbretti E, Miozzo MC, Burrone OR (1998) Rotavirus NSP5 phosphorylation is up-regulated by interaction with NSP2. J Gen Virol 79:2679–2686

    PubMed  CAS  Google Scholar 

  • Aponte C, Poncet D, Cohen J (1996) Recovery and characterization of a replicase complex in rotavirus-infected cells by using amonoclonal antibody against NSP2. J Virol 70:985–991

    PubMed  CAS  Google Scholar 

  • Arias CF, Romero P, Alvarez V, Lopez S (1996) Trypsin activation pathway of rotavirus infectivity. J Virol 70:5832–5839

    PubMed  CAS  Google Scholar 

  • Arias CF, Dector MA, Segovia L, Lopez T, Camacho M, Isa P, Espinosa R, Lopez S (2004) RNA silencing of rotavirus gene expression. Virus Res 102:43–51

    PubMed  CAS  Google Scholar 

  • Au KS, Chan WK, Burns JW, Estes MK (1989) Receptor activity of rotavirus nonstructural glycoprotein NS28. J Virol 63:4553–4562

    PubMed  CAS  Google Scholar 

  • Au KS, Mattion NM, Estes MK (1993) A subviral particle binding domain on the rotavirus nonstructural glycoprotein NS28. Virology 194:665–673

    PubMed  CAS  Google Scholar 

  • Ball JM, Tian P, Zeng CQ, Morris AP, Estes MK (1996) Age-dependent diarrhea induced by a rotaviral nonstructural glycoprotein. Science 272:101–104

    PubMed  CAS  Google Scholar 

  • Barro M, Patton J T (2005) Rotavirus nonstructural protein 1 subverts innate immune response by inducing degradation of IFN regulatory factor 3. Proc Natl Acad Sci U S A 102:4114–4119

    PubMed  CAS  Google Scholar 

  • Belnap DM, Filman DJ, Trus BL, Cheng N, Booy FP, Conway JF, Curry S, Hiremath CN, Tsang SK, Steven AC, Hogle JM (2000) Molecular tectonicmodel of virus structural transitions: the putative cell entry states of poliovirus. J Virol 74:1342–1354

    PubMed  CAS  Google Scholar 

  • Berois M, Sapin C, Erk I, Poncet D, Cohen J (2003) Rotavirus nonstructural protein NSP5 interacts with major core protein VP2. J Virol 77:1757–1763

    PubMed  CAS  Google Scholar 

  • Blutt SE, Kirkwood CD, Parreno V, Warfield KL, Ciarlet M, Estes MK, Bok K, Bishop RF, Conner ME (2003) Rotavirus antigenaemia and viraemia: a common event? Lancet 362:1445–1449

    PubMed  Google Scholar 

  • Bowman GD, Nodelman IM, Levy O, Lin SL, Tian P, Zamb TJ, Udem SA, Venkataraghavan B, Schutt CE (2000) Crystal structure of the oligomerization domain of NSP4 from rotavirus reveals a core metal-binding site. J Mol Biol 304:861–871

    PubMed  CAS  Google Scholar 

  • Bullough PA, Hughson FM, Skehel JJ, Wiley DC (1994) Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 371:37–43

    PubMed  CAS  Google Scholar 

  • Burns JW, Greenberg HB, Shaw RD, Estes MK (1988) Functional and topographical analyses of epitopes on the hemagglutinin (VP4) of the simian rotavirus SA11. J Virol 62:2164–2172

    PubMed  CAS  Google Scholar 

  • Campagna M, Eichwald C, Vascotto F, Burrone OR (2005) RNA interference of rotavirus segment 11 mRNA reveals the essential role of NSP5 in the virus replicative cycle. J Gen Virol 86:1481–1487

    PubMed  CAS  Google Scholar 

  • Carpio RV, Gonzalez-Nilo FD, Jayaram H, Spencer E, Prasad BV, Patton JT, Taraporewala ZF (2004) Role of the histidine triad-like motif in nucleotide hydrolysis by the rotavirus RNA-packaging protein NSP2. J Biol Chem 279:10624–10633

    PubMed  Google Scholar 

  • Chen D, Luongo CL, Nibert ML, Patton J T (1999) Rotavirus open cores catalyze 5′-capping and methylation of exogenous RNA: evidence that VP3 is a methyltransferase. Virology 265:120–130

    PubMed  CAS  Google Scholar 

  • Ciarlet M, Crawford SE, Estes MK (2001) Differential infection of polarized epithelial cell lines by sialic acid-dependent and sialic acid-independent rotavirus strains. J Virol 75:11834–11850

    PubMed  CAS  Google Scholar 

  • Cioc AM, Nuovo GJ (2002) Histologic and in situ viral findings in the myocardium in cases of sudden, unexpected death. Mod Pathol 15:914–922

    PubMed  Google Scholar 

  • Cohen J (2001) Rethinking a vaccine’s risk. Science 293:1576–1577

    PubMed  CAS  Google Scholar 

  • Cohen J, Charpilienne A, Chilmonczyk S, Estes MK (1989) Nucleotide sequence of bovine rotavirus gene 1 and expression of the gene product in baculovirus. Virology 171:131–140

    PubMed  CAS  Google Scholar 

  • Crawford SE, Labbe M, Cohen J, Burroughs MH, Zhou YJ, Estes MK (1994) Characterization of virus-like particles produced by the expression of rotavirus capsid proteins in insect cells. J Virol 68:5945–5922

    PubMed  CAS  Google Scholar 

  • Crawford SE, Mukherjee SK, Estes MK, Lawton JA, Shaw AL, Ramig RF, Prasad BV (2001) Trypsin cleavage stabilizes the rotavirus VP4 spike. J Virol 75:6052–6061

    PubMed  CAS  Google Scholar 

  • Dector MA, Romero P, Lopez S, Arias CF (2002) Rotavirus gene silencing by small interfering RNAs. EMBO Rep 3:1175–1180

    PubMed  CAS  Google Scholar 

  • Deo RC, Groft CM, Rajashankar KR, Burley SK (2002) Recognition of the rotavirus mRNA 3′ consensus by an asymmetric NSP3 homodimer. Cell 108:71–81

    PubMed  CAS  Google Scholar 

  • Desselberger U (1996) Genome rearrangements of rotaviruses. Arch Virol Suppl 12:37–51

    PubMed  CAS  Google Scholar 

  • Desselberger U (1997) Viral factors determining rotavirus pathogenicity. Arch Virol Suppl 13:131–139

    PubMed  CAS  Google Scholar 

  • Dormitzer PR, Sun ZY, Wagner G, Harrison SC (2002) The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site. EMBO J 21:885–897

    PubMed  CAS  Google Scholar 

  • Dormitzer PR, Nason EB, Prasad BV, Harrison SC (2004) Structural rearrangements in themembrane penetration protein of a non-enveloped virus. Nature 430:1053–1058

    PubMed  CAS  Google Scholar 

  • Dowling W, Denisova E, LaMonica R, Mackow ER (2000) Selective membrane permeabilization by the rotavirus VP5* protein is abrogated bymutations in an internal hydrophobic domain. J Virol 74:6368–6376

    PubMed  CAS  Google Scholar 

  • Estes MK (2001) Rotaviruses and their replication. In: Fields BN, Knipe RM, Chanock MS et al (eds) Virology. Lippincott-Raven, Philadelphia, pp 1747–1785

    Google Scholar 

  • Estes MK (ed) (2003) The rotavirus NSP4 enterotoxin: Current status and challenges. Elsevier, Amsterdam

    Google Scholar 

  • Estes MK, Cohen J (1989) Rotavirus gene structure and function. Microbiol Rev 53:410–449

    PubMed  CAS  Google Scholar 

  • Estes MK, Graham DY, Mason BB (1981) Proteolytic enhancement of rotavirus infectivity: molecular mechanisms. J Virol 39:879–888

    PubMed  CAS  Google Scholar 

  • Estes MK, Crawford SE, Penaranda ME, Petrie BL, Burns JW, Chan WK, Ericson B, Smith GE, Summers MD (1987) Synthesis and immunogenicity of the rotavirus major capsid antigen using a baculovirus expression system. JVirol 61:1488–1494

    CAS  Google Scholar 

  • Estes MK, Kang G, Zeng CQ, Crawford SE, Ciarlet M (2001) Pathogenesis of rotavirus gastroenteritis. Novartis Found Symp 238:82–96; discussion 96–100

    PubMed  CAS  Google Scholar 

  • Fabbretti E, Afrikanova I, Vascotto F, Burrone OR (1999) Two non-structural rotavirus proteins, NSP2 and NSP5, form viroplasm-like structures in vivo. J Gen Virol 80:333–339

    PubMed  CAS  Google Scholar 

  • Fields BN (1996) The Reoviridae. In: Fields BN, Knipe RM, Chanock MS et al (eds) Virology. Lippincott-Raven, Philadelphia, pp 1553–1555

    Google Scholar 

  • Fiore L, Greenberg HB, Mackow ER (1991) The VP8 fragment of VP4 is the rhesus rotavirus hemagglutinin. Virology 181:553–563

    PubMed  CAS  Google Scholar 

  • Fukuhara N, Yoshie O, Kitaoka S, Konno T (1988) Role of VP3 in human rotavirus internalization after target cell attachment via VP7. J Virol 62:2209–2218

    PubMed  CAS  Google Scholar 

  • Gallegos CO, Patton JT (1989) Characterization of rotavirus replication intermediates: a model for the assembly of single-shelled particles. Virology 172:616–627

    PubMed  CAS  Google Scholar 

  • Gibbons DL, Vaney MC, Roussel A, Vigouroux A, Reilly B, Lepault J, Kielian M, Rey FA (2004) Conformational change and protein-protein interactions of the fusion protein of Semliki Forest virus. Nature 427:320–325

    PubMed  CAS  Google Scholar 

  • Ginn DI, Ward RL, Hamparian VV, Hughes JH (1992) Inhibition of rotavirus in vitro transcription by optimal concentrations of monoclonal antibodies specific for rotavirus VP6. J Gen Virol 73:3017–3022

    PubMed  CAS  Google Scholar 

  • Gouet P, Diprose JM, Grimes JM, Malby R, Burroughs JN, Zientara S, Stuart DI, Mertens PP (1999) The highly ordered double-stranded RNA genome of bluetongue virus revealed by crystallography. Cell 97:481–490

    PubMed  CAS  Google Scholar 

  • Graff JW, Mitzel DN, Weisend CM, Flenniken ML, Hardy ME (2002) Interferon regulatory factor 3 is a cellular partner of rotavirus NSP1. J Virol 76:9545–9550

    PubMed  CAS  Google Scholar 

  • Graham KL, Halasz P, Tan Y, Hewish MJ, Takada Y, Mackow ER, Robinson MK, Coulson BS (2003) Integrin-using rotaviruses bind alpha2beta1 integrin alpha2 I domain via VP4 DGE sequence and recognize alphaXbeta2 and alphaVbeta3 by using VP7 during cell entry. J Virol 77:9969–9978

    PubMed  CAS  Google Scholar 

  • Grimes JM, Jakana J, Ghosh M, Basak AK, Roy P, Chiu W, Stuart DI, Prasad BV (1997) An atomic model of the outer layer of the bluetongue virus core derived from X-ray crystallography and electron cryomicroscopy. Structure 5:885–893

    PubMed  CAS  Google Scholar 

  • Grimes JM, Burroughs JN, Gouet P, Diprose JM, Malby R, Zientara S, Mertens PP, Stuart DI (1998) The atomic structure of the bluetongue virus core. Nature 395:470–478

    PubMed  CAS  Google Scholar 

  • Groft CM, Burley SK (2002) Recognition of eIF4G by rotavirus NSP3 reveals a basis for mRNA circularization. Mol Cell 9:1273–1283

    PubMed  CAS  Google Scholar 

  • Hill CL, Booth TF, Prasad BV, Grimes JM, Mertens PP, Sutton GC, Stuart DI (1999) The structure of a cypovirus and the functional organization of dsRNA viruses. Nat Struct Biol 6:565–568

    PubMed  CAS  Google Scholar 

  • Hongou K, Konishi T, Yagi S, Araki K, Miyawaki T (1998) Rotavirus encephalitis mimicking afebrile benign convulsions in infants. Pediatr Neurol 18:354–357

    PubMed  CAS  Google Scholar 

  • Iturriza-Gomara M, Isherwood B, Desselberger U, Gray J (2001) Reassortment in vivo: driving force for diversity of human rotavirus strains isolated in the United Kingdom between 1995 and 1999. J Virol 75:3696–3705

    PubMed  CAS  Google Scholar 

  • Iturriza-Gomara M, Auchterlonie IA, Zaw W, Molyneaux P, Desselberger U, Gray J (2002) Rotavirus gastroenteritis and central nervous system (CNS) infection: characterization of the VP7 and VP4 genes of rotavirus strains isolated from paired fecal and cerebrospinal fluid samples from a child with CNS disease. J Clin Microbiol 40:4797–4799

    PubMed  CAS  Google Scholar 

  • Jayaram H, Taraporewala Z, Patton JT, Prasad BV (2002) Rotavirus protein involved in genome replication and packaging exhibits a HIT-like fold. Nature 417:311–315

    PubMed  CAS  Google Scholar 

  • Jayaram H, Estes MK, Prasad BV (2004) Emerging themes in rotavirus cell entry, genome organization, transcription and replication. Virus Res 101:67–81

    PubMed  CAS  Google Scholar 

  • Kaljot KT, Shaw RD, Rubin DH, Greenberg HB (1988) Infectious rotavirus enters cells by direct cell membrane penetration, not by endocytosis. J Virol 62:1136–1144

    PubMed  CAS  Google Scholar 

  • Kapikian AZ (2002) Ecological studies, rotavirus vaccination, and intussusception. Lancet 359:1065–1066; author reply 1066

    PubMed  Google Scholar 

  • Kattoura M, Chen X, Patton J (1994) The rotavirus RNA-binding protein NS35 (NSP2) forms 10S multimers and interacts with the viral RNA polymerase. Virology 202:803–813

    PubMed  CAS  Google Scholar 

  • Keljo DJ, Kuhn M, Smith A (1988) Acidification of endosomes is not important for the entry of rotavirus into the cell. J Pediatr Gastroenterol Nutr 7:257–263

    PubMed  CAS  Google Scholar 

  • Kirkwood CD, Bishop RF, Coulson BS (1996) Human rotavirus VP4 contains strain-specific, serotype-specific and cross-reactive neutralization sites. Arch Virol 141:587–600

    PubMed  CAS  Google Scholar 

  • Kirkwood CD, Bishop RF, Coulson BS (1998) Attachment and growth of human rotaviruses RV-3 and S12/85 in Caco-2 cells depend on VP4. J Virol 72:9348–9352

    PubMed  CAS  Google Scholar 

  • Kohli E, Pothier P, Tosser G, Cohen J, Sandino AM, Spencer E (1993) In vitro reconstitution of rotavirus transcriptional activity using viral cores and recombinant baculovirus expressed VP6. Arch Virol 133:451–458

    PubMed  CAS  Google Scholar 

  • Labbe M, Charpilienne A, Crawford SE, Estes MK, Cohen J (1991) Expression of rotavirus VP2 produces empty corelike particles. J Virol 65:2946–2952

    PubMed  CAS  Google Scholar 

  • Lawton JA, Estes MK, Prasad BV (1997a) Three-dimensional visualization of mRNA release from actively transcribing rotavirus particles. Nat Struct Biol 4:118–121

    PubMed  CAS  Google Scholar 

  • Lawton JA, Zeng CQ, Mukherjee SK, Cohen J, Estes MK, Prasad BV (1997b) Three-dimensional structural analysisof recombinant rotavirus-like particles with intact and amino-terminal-deleted VP2: implications for the architecture of the VP2 capsid layer. J Virol 71:7353–7360

    PubMed  CAS  Google Scholar 

  • Lawton JA, Estes MK, Prasad BV (1999) Comparative structural analysis of transcriptionally competent and incompetent rotavirus-antibody complexes. Proc Natl Acad Sci U S A 96:5428–5433

    PubMed  CAS  Google Scholar 

  • Lawton JA, Estes MK, Prasad BV (2000) Mechanism of genome transcription in segmented dsRNA viruses. Adv Virus Res 55:185–229

    PubMed  CAS  Google Scholar 

  • Liemann S, Chandran K, Baker TS, Nibert ML, Harrison SC (2002) Structure of the reovirus membrane-penetration protein, Mu1, in a complex with is protector protein, Sigma3. Cell 108:283–295

    PubMed  CAS  Google Scholar 

  • Lima CD, Klein MG, Hendrickson WA (1997) Structure-based analysis of catalysis and substrate definition in the HIT protein family. Science 278:286–290

    PubMed  CAS  Google Scholar 

  • Lopez S, Arias CF (2004) Multistep entry of rotavirus into cells: a Versaillesque dance. Trends Microbiol 12:271–278

    PubMed  CAS  Google Scholar 

  • Lopez S, Arias CF, Bell JR, Strauss J H, Espejo RT (1985) Primary structure of the cleavage site associated with trypsin enhancement of rotavirus SA11 infectivity. Virology 144:11–19

    PubMed  CAS  Google Scholar 

  • Lopez T, Camacho M, Zayas M, Najera R, Sanchez R, Arias CF, Lopez S (2005) Silencing the morphogenesis of rotavirus. J Virol 79:184–192

    PubMed  CAS  Google Scholar 

  • Ludert JE, Feng N, Yu JH, Broome RL, Hoshino Y, Greenberg HB (1996) Genetic mapping indicates that VP4 is the rotavirus cell attachment protein in vitro and in vivo. J Virol 70:487–493

    PubMed  CAS  Google Scholar 

  • Ludert JE, Mason BB, Angel J, Tang B, Hoshino Y, Feng N, Vo PT, Mackow EM, Ruggeri FM, Greenberg HB (1998) Identification of mutations in the rotavirus protein VP4 that alter sialic-acid-dependent infection. J Gen Virol 79:725–729

    PubMed  CAS  Google Scholar 

  • Lynch M, Lee B, Azimi P, Gentsch J, Glaser C, Gilliam S, Chang HG, Ward R, Glass RI (2001) Rotavirus and central nervous system symptoms: cause or contaminant? Case reports and review. Clin Infect Dis 33:932–938

    PubMed  CAS  Google Scholar 

  • Lynch M, Shieh WJ, Tatti K, Gentsch JR, Ferebee-Harris T, Jiang B, Guarner J, Bresee J S, Greenwald M, Cullen S et al (2003) The pathology of rotavirus-associated deaths, using new molecular diagnostics. Clin Infect Dis 37:1327–1333

    PubMed  Google Scholar 

  • Mackow ER, Shaw RD, Matsui SM, Vo PT, Dang MN, Greenberg HB (1988) The rhesus rotavirus gene encoding protein VP3: location of amino acids involved in homologous and heterologous rotavirus neutralization and identification of a putative fusion region. Proc Natl Acad Sci U S A 85:645–649

    PubMed  CAS  Google Scholar 

  • Mathieu M, Petitpas I, Navaza J, Lepault J, Kohli E, Pothier P, Prasad BV, Cohen J, Rey FA (2001) Atomic structure of the major capsid protein of rotavirus: implications for the architecture of the virion. EMBO J 20:1485–1497

    PubMed  CAS  Google Scholar 

  • Mattion NM, Mitchell DB, Both GW, Estes MK (1991) Expression of rotavirus proteins encoded by alternative open reading frames of genome segment 11. Virology 181:295–304

    PubMed  CAS  Google Scholar 

  • Mattion NM, Cohen J, Aponte C, Estes MK (1992) Characterization of an oligomerization domain and RNA-binding properties on rotavirus nonstructural protein NS34. Virology 190:68–83

    PubMed  CAS  Google Scholar 

  • Meyer JC, Bergmann CC, Bellamy AR (1989) Interaction of rotavirus cores with the nonstructural glycoprotein NS28. Virology 171:98–107

    PubMed  CAS  Google Scholar 

  • Midthun K, Kapikian AZ (1996) Rotavirus vaccines: an overview. Clin Microbiol Rev 9:423–434

    PubMed  CAS  Google Scholar 

  • Modis Y, Ogata S, Clements D, Harrison SC (2004) Structure of the dengue virus envelope protein after membrane fusion. Nature 427:313–319

    PubMed  CAS  Google Scholar 

  • Moon HW(1994) Pathophysiology of viral diarrhea. In: Kapikian AZ (ed) Viral infections of the gastrointestinal trac. Marcel Dekker, New York, pp 27–52

    Google Scholar 

  • Morrison C, Gilson T, Nuovo GJ (2001) Histologic distribution of fatal rotaviral infection: an immunohistochemical and reverse transcriptase in situ polymerase chain reaction analysis. Hum Pathol 32:216–221

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay S, Kim BS, Chipman PR, Rossmann MG, Kuhn RJ (2003) Structure of West Nile virus. Science 302:248

    PubMed  CAS  Google Scholar 

  • Nakagawa A, Miyazaki N, Taka J, Naitow H, Ogawa A, Fujimoto Z, Mizuno H, Higashi T, Watanabe Y, Omura T et al (2003) The atomic structure of rice dwarf virus reveals the self-assembly mechanism of component proteins. Structure (Camb) 11:1227–1238

    PubMed  CAS  Google Scholar 

  • Nandi P, Charpilienne A, Cohen J (1992) Interaction of rotavirus particles with liposomes. J Virol 66:3363–3367

    PubMed  CAS  Google Scholar 

  • Nason EL, Samal SK, Venkataram Prasad BV (2000) Trypsin-induced structural transformation in aquareovirus. J Virol 74:6546–6555

    PubMed  CAS  Google Scholar 

  • Nason EL, Rothagel R, Mukherjee SK, Kar AK, Forzan M, Prasad BV, Roy P (2004) Interactions between the inner and outer capsids of bluetongue virus. J Virol 78:8059–8067

    PubMed  CAS  Google Scholar 

  • Nejmeddine M, Trugnan G, Sapin C, Kohli E, Svensson L, Lopez S, Cohen J (2000) Rotavirus spike protein VP4 is present at the plasma membrane and is associated with microtubules in infected cells. J Virol 74:3313–3320

    PubMed  CAS  Google Scholar 

  • O’Brien JA, Taylor JA, Bellamy AR (2000) Probing the structure of rotavirus NSP4: a short sequence at the extreme C terminus mediates binding to the inner capsid particle. J Virol 74:5388–5394

    PubMed  CAS  Google Scholar 

  • Padilla-Noriega L, Dunn SJ, Lopez S, Greenberg HB, Arias CF (1995) Identification of two independent neutralization domains on the VP4 trypsin cleavage products VP5* and VP8* of human rotavirus ST3. Virology 206:148–154

    PubMed  CAS  Google Scholar 

  • Pager C, Steele D, Gwamanda P, Driessen M (2000) A neonatal death associated with rotavirus infection-detection of rotavirus dsRNA in the cerebrospinal fluid. S Afr Med J 90:364–365

    PubMed  CAS  Google Scholar 

  • Parashar UD, Hummelman EG, Bresee JS, Miller MA, Glass RI (2003) Global illness and deaths caused by rotavirus disease in children. Emerg Infect Dis 9:565–572

    PubMed  Google Scholar 

  • Pesavento JB, Lawton JA, Estes ME, Venkataram Prasad BV (2001) The reversible condensation and expansion of the rotavirus genome. Proc Natl Acad Sci U S A 98:1381–1386

    PubMed  CAS  Google Scholar 

  • Pesavento JB, Billingsley AM, Roberts EJ, Ramig RF, Prasad BV (2003a) Structures of rotavirus reassortants demonstrate correlation of altered conformation of the VP4 spike and expression of unexpected VP4-associated phenotypes. J Virol 77:3291–3296

    PubMed  CAS  Google Scholar 

  • Pesavento JB, Estes MK, Prasad BV (2003b) Structural organization of the genome in rotavirus. In: Desselberger U (ed) Perspectives in medical virology 9: viral gastroenteritis Elsevier, London, pp 115–127

    Google Scholar 

  • Pesavento J, Crawford SE, Roberts E, Estes MK, Prasad BV (2005) pH-Induced conformational change of the rotavirus VP4 spike: implications for cell entry and antibody neutralization. J Virol 79:8572–8580

    PubMed  CAS  Google Scholar 

  • Petrie BL, Greenberg HB, Graham DY, Estes MK (1984) Ultrastructural localization of rotavirus antigens using colloidal gold. Virus Res 1:133–152

    PubMed  CAS  Google Scholar 

  • Piron M, Vende P, Cohen J, Poncet D (1998) Rotavirus RNA-binding protein NSP3 interacts with eIF4GI and evicts the poly(A) binding protein from eIF4F. EMBO J 17:5811–5821

    PubMed  CAS  Google Scholar 

  • Piron M, Delaunay T, Grosclaude J, Poncet D (1999) Identification of the RNA-binding, dimerization, and eIF4GI-binding domains of rotavirus nonstructural protein NSP3. J Virol 73:5411–5421

    PubMed  CAS  Google Scholar 

  • Poncet D, Lindenbaum P, L’Haridon R, Cohen J (1997) In vivo and in vitro phosphorylation of rotavirus NSP5 correlates with its localization in viroplasms. J Virol 71:34–41

    PubMed  CAS  Google Scholar 

  • Prasad BVV, Estes MK (2000) Electron cryomicroscopy and computer image processing techniques: use in structure-function studies of rotavirus. Human Press, Totowa, NJ

    Google Scholar 

  • Prasad BV, Prevelige PE Jr (2003) Viral genome organization. Adv Protein Chem 64:219–258

    PubMed  CAS  Google Scholar 

  • Prasad BV, Wang GJ, Clerx JP, Chiu W (1988) Three-dimensional structure of rotavirus. J Mol Biol 199:269–275

    PubMed  CAS  Google Scholar 

  • Prasad BV, Burns JW, Marietta E, Estes MK, Chiu W (1990) Localization of VP4 neutralization sites in rotavirus by three-dimensional cryo-electron microscopy. Nature 343:476–479

    PubMed  CAS  Google Scholar 

  • Prasad BV, Rothnagel R, Zeng CQ, Jakana J, Lawton JA, Chiu W, Estes MK (1996) Visualization of ordered genomic RNA and localization of transcriptional complexes in rotavirus. Nature 382:471–473

    PubMed  CAS  Google Scholar 

  • Reinisch KM, Nibert ML, Harrison SC (2000) Structure of the reovirus core at 3.6Ã… resolution. Nature 404:960–967

    PubMed  CAS  Google Scholar 

  • Ruiz MC, Alonso-Torre SR, Charpilienne A, Vasseur M, Michelangeli F, Cohen J, Alvarado F (1994) Rotavirus interaction with isolated membrane vesicles. J Virol 68:4009–4016

    PubMed  CAS  Google Scholar 

  • Sabara M, Gilchrist JE, Hudson GR, Babiuk LA (1985) Preliminary characterization of an epitope involved in neutralization and cell attachment that is located on the major bovine rotavirus glycoprotein. J Virol 53:58–66

    PubMed  CAS  Google Scholar 

  • Sapin C, Colard O, Delmas O, Tessier C, Breton M, Enouf V, Chwetzoff S, Ouanich J, Cohen J, Wolf C, Trugnan G (2002) Rafts promote assembly and atypical targeting of a nonenveloped virus, rotavirus, in Caco-2 cells. J Virol 76:4591–4602

    PubMed  CAS  Google Scholar 

  • Sasaki S, Horie Y, Nakagomi T, Oseto M, Nakagomi O (2001) Group C rotavirus NSP4 induces diarrhea in neonatal mice. Arch Virol 146:801–806

    PubMed  CAS  Google Scholar 

  • Shaw AL, Rothnagel R, Chen D, Ramig RF, Chiu W, Prasad BV (1993) Three-dimensional visualization of the rotavirus hemagglutinin structure. Cell 74:693–701

    PubMed  CAS  Google Scholar 

  • Silvestri LS, Taraporewala ZF, Patton JT (2004) Rotavirus replication: plus-sense templates for double-stranded RNA synthesis are made in viroplasms. JVirol 78:7763–7774

    CAS  Google Scholar 

  • Taraporewala ZF, Patton JT (2001) Identification and characterization of the helixdestabilizing activity of rotavirus nonstructural protein NSP2. J Virol 75:4519–4527

    PubMed  CAS  Google Scholar 

  • Taraporewala ZF, Patton JT (2004) Nonstructural proteins involved in genome packaging and replication of rotaviruses and other members of the Reoviridae. Virus Res 101:57–66

    PubMed  CAS  Google Scholar 

  • Taraporewala Z, Chen D, Patton JT (1999) Multimers formed by the rotavirus nonstructural protein NSP2 bind to RNA and have nucleoside triphosphatase activity. J Virol 73:9934–9943

    PubMed  CAS  Google Scholar 

  • Taraporewala ZF, Chen D, Patton JT (2001) Multimers of the bluetongue virus nonstructural protein, NS2, possess nucleotidyl phosphatase activity: similarities between NS2 and rotavirus NSP2. Virology 280:221–231

    PubMed  CAS  Google Scholar 

  • Taylor JA, Meyer JC, Legge MA, O’Brien JA, Street JE, Lord VJ, Bergmann CC, Bellamy AR (1992) Transient expression and mutational analysis of the rotavirus intracellular receptor: the C-terminal methionine residue is essential for ligand binding. J Virol 66:3566–3572

    PubMed  CAS  Google Scholar 

  • Taylor JA, O’Brien JA, Lord VJ, Meyer JC, Bellamy AR (1993) The RER-localized rotavirus intracellular receptor: a truncated purified soluble form is multivalent and binds virus particles. Virology 194:807–814

    PubMed  CAS  Google Scholar 

  • Thouvenin E, Schoehn G, Rey F, Petitpas I, Mathieu M, Vaney MC, Cohen J, Kohli E, Pothier P, Hewat E (2001) Antibody inhibition of the transcriptase activity of the rotavirus DLP: a structural view. J Mol Biol 307:161–172

    PubMed  CAS  Google Scholar 

  • Tian P, Ball JM, Zeng CQ, Estes MK (1996) Rotavirus protein expression is important for virus assembly and pathogenesis. Arch Virol Suppl 12:69–77

    PubMed  CAS  Google Scholar 

  • Tihova M, Dryden KA, Bellamy AR, Greenberg HB, Yeager M (2001) Localization of membrane permeabilization and receptor binding sites on the VP4 hemagglutinin of rotavirus: implications for cell entry. J Mol Biol 314:985–992

    PubMed  CAS  Google Scholar 

  • Torres-Vega MA, Gonzalez RA, Duarte M, Poncet D, Lopez S, Arias CF (2000) The C-terminal domain of rotavirus NSP5 is essential for its multimerization, hyperphosphorylation and interaction with NSP6. J Gen Virol 81:821–830

    PubMed  CAS  Google Scholar 

  • Valenzuela S, Pizarro J, Sandino AM, Vasquez M, Fernandez J, Hernandez O, Patton J, Spencer E (1991) Photoaffinity labeling of rotavirus VP1 with 8-azido-ATP: identification of the viral RNA polymerase. J Virol 65:3964–3967

    PubMed  CAS  Google Scholar 

  • Vende P, Piron M, Castagne N, Poncet D (2000) Efficient translation of rotavirus mRNA requires simultaneous interaction of NSP3 with the eukaryotic translation initiation factor eIF4G and the mRNA 3′ end. J Virol 74:7064–7071

    PubMed  CAS  Google Scholar 

  • Welch SK, Crawford SE, Estes MK (1989) Rotavirus SA11 genome segment 11 protein is a nonstructural phosphoprotein. J Virol 63:3974–3982

    PubMed  CAS  Google Scholar 

  • Wentz MJ, Zeng CQ, Patton JT, Estes MK, Ramig RF (1996) Identification of the minimal replicase and the minimal promoter of (-)-strand synthesis, functional in rotavirus RNA replication in vitro. Arch Virol Suppl 12:59–67

    PubMed  CAS  Google Scholar 

  • Wiley DC, Skehel JJ (1987) The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu Rev Biochem 56:365–394

    PubMed  CAS  Google Scholar 

  • Yeager M, Dryden KA, Olson NH, Greenberg HB, Baker TS (1990) Three-dimensional structure of rhesus rotavirus by cryoelectron microscopy and image reconstruction. J Cell Biol 110:2133–2144

    PubMed  CAS  Google Scholar 

  • Yeager M, Berriman JA, Baker TS, Bellamy AR (1994) Three-dimensional structure of the rotavirus haemagglutinin VP4 by cryo-electron microscopy and difference map analysis. EMBO J 13:1011–1018

    PubMed  CAS  Google Scholar 

  • Zarate S, Espinosa R, Romero P, Guerrero CA, Arias CF, Lopez S (2000a) Integrin alpha2beta1 mediates the cell attachment of the rotavirus neuraminidase-resistant variant nar3. Virology 278:50–54

    PubMed  CAS  Google Scholar 

  • Zarate S, Espinosa R, Romero P, Mendez E, Arias CF, Lopez S (2000b) The VP5 domain of VP4 can mediate attachment of rotaviruses to cells. J Virol 74:593–599

    PubMed  CAS  Google Scholar 

  • Zeng CQ, Labbe M, Cohen J, Prasad BVV, Chen D, Ramig RF, Estes MK (1994) Characterization of rotavirus VP2 particles. Virology 201:55–65

    PubMed  CAS  Google Scholar 

  • Zhang H, Zhang J, Yu X, Lu X, Zhang Q, Jakana J, Chen DH, Zhang X, Zhou ZH (1999) Visualization of protein-RNA interactions in cytoplasmic polyhedrosis virus. J Virol 73:1624–1629

    PubMed  CAS  Google Scholar 

  • Zhang X, Walker SB, Chipman PR, Nibert ML, Baker TS (2003) Reovirus polymerase lambda 3 localized by cryo-electron microscopy of virions at a resolution of 7.6 A. Nat Struct Biol 10:1011–1018

    PubMed  CAS  Google Scholar 

  • Zhou ZH, Baker ML, Jiang W, Dougherty M, Jakana J, Dong G, Lu G, Chiu W (2001) Electron cryomicroscopy and bioinformatics suggest protein fold models for rice dwarf virus. Nat Struct Biol 8:868–873

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Venkataram Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pesavento, J.B., Crawford, S.E., Estes, M.K., Venkataram Prasad, B.V. (2006). Rotavirus Proteins: Structure and Assembly. In: Roy, P. (eds) Reoviruses: Entry, Assembly and Morphogenesis. Current Topics in Microbiology and Immunology, vol 309. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-30773-7_7

Download citation

Publish with us

Policies and ethics