Abstract
Rotavirus is a major pathogen of infantile gastroenteritis. It is a large and complex virus with a multilayered capsid organization that integrates the deter minants of host specificity, cell entry, and the enzymatic functions necessary for endogenous transcription of the genome that consists of 11 dsRNA segments. These segments encode six structural and six nonstructural proteins. In the last few years, there has been substantial progress in our understanding of both the structural and functional aspects of a variety of molecular processes involved in the replication of this virus. Studies leading to this progress using of a variety of structural and biochemical techniques including the recent application of RNA interference technology have uncovered several unique and intriguing features related to viral morphogenesis. This review focuses on our current understanding of the structural basis of the molecular processes that govern the replication of rotavirus.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Afrikanova I, Miozzo MC, Giambiagi S, Burrone O (1996) Phosphorylation generates different forms of rotavirus NSP5. J Gen Virol 77:2059–2065
Afrikanova I, Fabbretti E, Miozzo MC, Burrone OR (1998) Rotavirus NSP5 phosphorylation is up-regulated by interaction with NSP2. J Gen Virol 79:2679–2686
Aponte C, Poncet D, Cohen J (1996) Recovery and characterization of a replicase complex in rotavirus-infected cells by using amonoclonal antibody against NSP2. J Virol 70:985–991
Arias CF, Romero P, Alvarez V, Lopez S (1996) Trypsin activation pathway of rotavirus infectivity. J Virol 70:5832–5839
Arias CF, Dector MA, Segovia L, Lopez T, Camacho M, Isa P, Espinosa R, Lopez S (2004) RNA silencing of rotavirus gene expression. Virus Res 102:43–51
Au KS, Chan WK, Burns JW, Estes MK (1989) Receptor activity of rotavirus nonstructural glycoprotein NS28. J Virol 63:4553–4562
Au KS, Mattion NM, Estes MK (1993) A subviral particle binding domain on the rotavirus nonstructural glycoprotein NS28. Virology 194:665–673
Ball JM, Tian P, Zeng CQ, Morris AP, Estes MK (1996) Age-dependent diarrhea induced by a rotaviral nonstructural glycoprotein. Science 272:101–104
Barro M, Patton J T (2005) Rotavirus nonstructural protein 1 subverts innate immune response by inducing degradation of IFN regulatory factor 3. Proc Natl Acad Sci U S A 102:4114–4119
Belnap DM, Filman DJ, Trus BL, Cheng N, Booy FP, Conway JF, Curry S, Hiremath CN, Tsang SK, Steven AC, Hogle JM (2000) Molecular tectonicmodel of virus structural transitions: the putative cell entry states of poliovirus. J Virol 74:1342–1354
Berois M, Sapin C, Erk I, Poncet D, Cohen J (2003) Rotavirus nonstructural protein NSP5 interacts with major core protein VP2. J Virol 77:1757–1763
Blutt SE, Kirkwood CD, Parreno V, Warfield KL, Ciarlet M, Estes MK, Bok K, Bishop RF, Conner ME (2003) Rotavirus antigenaemia and viraemia: a common event? Lancet 362:1445–1449
Bowman GD, Nodelman IM, Levy O, Lin SL, Tian P, Zamb TJ, Udem SA, Venkataraghavan B, Schutt CE (2000) Crystal structure of the oligomerization domain of NSP4 from rotavirus reveals a core metal-binding site. J Mol Biol 304:861–871
Bullough PA, Hughson FM, Skehel JJ, Wiley DC (1994) Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 371:37–43
Burns JW, Greenberg HB, Shaw RD, Estes MK (1988) Functional and topographical analyses of epitopes on the hemagglutinin (VP4) of the simian rotavirus SA11. J Virol 62:2164–2172
Campagna M, Eichwald C, Vascotto F, Burrone OR (2005) RNA interference of rotavirus segment 11 mRNA reveals the essential role of NSP5 in the virus replicative cycle. J Gen Virol 86:1481–1487
Carpio RV, Gonzalez-Nilo FD, Jayaram H, Spencer E, Prasad BV, Patton JT, Taraporewala ZF (2004) Role of the histidine triad-like motif in nucleotide hydrolysis by the rotavirus RNA-packaging protein NSP2. J Biol Chem 279:10624–10633
Chen D, Luongo CL, Nibert ML, Patton J T (1999) Rotavirus open cores catalyze 5′-capping and methylation of exogenous RNA: evidence that VP3 is a methyltransferase. Virology 265:120–130
Ciarlet M, Crawford SE, Estes MK (2001) Differential infection of polarized epithelial cell lines by sialic acid-dependent and sialic acid-independent rotavirus strains. J Virol 75:11834–11850
Cioc AM, Nuovo GJ (2002) Histologic and in situ viral findings in the myocardium in cases of sudden, unexpected death. Mod Pathol 15:914–922
Cohen J (2001) Rethinking a vaccine’s risk. Science 293:1576–1577
Cohen J, Charpilienne A, Chilmonczyk S, Estes MK (1989) Nucleotide sequence of bovine rotavirus gene 1 and expression of the gene product in baculovirus. Virology 171:131–140
Crawford SE, Labbe M, Cohen J, Burroughs MH, Zhou YJ, Estes MK (1994) Characterization of virus-like particles produced by the expression of rotavirus capsid proteins in insect cells. J Virol 68:5945–5922
Crawford SE, Mukherjee SK, Estes MK, Lawton JA, Shaw AL, Ramig RF, Prasad BV (2001) Trypsin cleavage stabilizes the rotavirus VP4 spike. J Virol 75:6052–6061
Dector MA, Romero P, Lopez S, Arias CF (2002) Rotavirus gene silencing by small interfering RNAs. EMBO Rep 3:1175–1180
Deo RC, Groft CM, Rajashankar KR, Burley SK (2002) Recognition of the rotavirus mRNA 3′ consensus by an asymmetric NSP3 homodimer. Cell 108:71–81
Desselberger U (1996) Genome rearrangements of rotaviruses. Arch Virol Suppl 12:37–51
Desselberger U (1997) Viral factors determining rotavirus pathogenicity. Arch Virol Suppl 13:131–139
Dormitzer PR, Sun ZY, Wagner G, Harrison SC (2002) The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site. EMBO J 21:885–897
Dormitzer PR, Nason EB, Prasad BV, Harrison SC (2004) Structural rearrangements in themembrane penetration protein of a non-enveloped virus. Nature 430:1053–1058
Dowling W, Denisova E, LaMonica R, Mackow ER (2000) Selective membrane permeabilization by the rotavirus VP5* protein is abrogated bymutations in an internal hydrophobic domain. J Virol 74:6368–6376
Estes MK (2001) Rotaviruses and their replication. In: Fields BN, Knipe RM, Chanock MS et al (eds) Virology. Lippincott-Raven, Philadelphia, pp 1747–1785
Estes MK (ed) (2003) The rotavirus NSP4 enterotoxin: Current status and challenges. Elsevier, Amsterdam
Estes MK, Cohen J (1989) Rotavirus gene structure and function. Microbiol Rev 53:410–449
Estes MK, Graham DY, Mason BB (1981) Proteolytic enhancement of rotavirus infectivity: molecular mechanisms. J Virol 39:879–888
Estes MK, Crawford SE, Penaranda ME, Petrie BL, Burns JW, Chan WK, Ericson B, Smith GE, Summers MD (1987) Synthesis and immunogenicity of the rotavirus major capsid antigen using a baculovirus expression system. JVirol 61:1488–1494
Estes MK, Kang G, Zeng CQ, Crawford SE, Ciarlet M (2001) Pathogenesis of rotavirus gastroenteritis. Novartis Found Symp 238:82–96; discussion 96–100
Fabbretti E, Afrikanova I, Vascotto F, Burrone OR (1999) Two non-structural rotavirus proteins, NSP2 and NSP5, form viroplasm-like structures in vivo. J Gen Virol 80:333–339
Fields BN (1996) The Reoviridae. In: Fields BN, Knipe RM, Chanock MS et al (eds) Virology. Lippincott-Raven, Philadelphia, pp 1553–1555
Fiore L, Greenberg HB, Mackow ER (1991) The VP8 fragment of VP4 is the rhesus rotavirus hemagglutinin. Virology 181:553–563
Fukuhara N, Yoshie O, Kitaoka S, Konno T (1988) Role of VP3 in human rotavirus internalization after target cell attachment via VP7. J Virol 62:2209–2218
Gallegos CO, Patton JT (1989) Characterization of rotavirus replication intermediates: a model for the assembly of single-shelled particles. Virology 172:616–627
Gibbons DL, Vaney MC, Roussel A, Vigouroux A, Reilly B, Lepault J, Kielian M, Rey FA (2004) Conformational change and protein-protein interactions of the fusion protein of Semliki Forest virus. Nature 427:320–325
Ginn DI, Ward RL, Hamparian VV, Hughes JH (1992) Inhibition of rotavirus in vitro transcription by optimal concentrations of monoclonal antibodies specific for rotavirus VP6. J Gen Virol 73:3017–3022
Gouet P, Diprose JM, Grimes JM, Malby R, Burroughs JN, Zientara S, Stuart DI, Mertens PP (1999) The highly ordered double-stranded RNA genome of bluetongue virus revealed by crystallography. Cell 97:481–490
Graff JW, Mitzel DN, Weisend CM, Flenniken ML, Hardy ME (2002) Interferon regulatory factor 3 is a cellular partner of rotavirus NSP1. J Virol 76:9545–9550
Graham KL, Halasz P, Tan Y, Hewish MJ, Takada Y, Mackow ER, Robinson MK, Coulson BS (2003) Integrin-using rotaviruses bind alpha2beta1 integrin alpha2 I domain via VP4 DGE sequence and recognize alphaXbeta2 and alphaVbeta3 by using VP7 during cell entry. J Virol 77:9969–9978
Grimes JM, Jakana J, Ghosh M, Basak AK, Roy P, Chiu W, Stuart DI, Prasad BV (1997) An atomic model of the outer layer of the bluetongue virus core derived from X-ray crystallography and electron cryomicroscopy. Structure 5:885–893
Grimes JM, Burroughs JN, Gouet P, Diprose JM, Malby R, Zientara S, Mertens PP, Stuart DI (1998) The atomic structure of the bluetongue virus core. Nature 395:470–478
Groft CM, Burley SK (2002) Recognition of eIF4G by rotavirus NSP3 reveals a basis for mRNA circularization. Mol Cell 9:1273–1283
Hill CL, Booth TF, Prasad BV, Grimes JM, Mertens PP, Sutton GC, Stuart DI (1999) The structure of a cypovirus and the functional organization of dsRNA viruses. Nat Struct Biol 6:565–568
Hongou K, Konishi T, Yagi S, Araki K, Miyawaki T (1998) Rotavirus encephalitis mimicking afebrile benign convulsions in infants. Pediatr Neurol 18:354–357
Iturriza-Gomara M, Isherwood B, Desselberger U, Gray J (2001) Reassortment in vivo: driving force for diversity of human rotavirus strains isolated in the United Kingdom between 1995 and 1999. J Virol 75:3696–3705
Iturriza-Gomara M, Auchterlonie IA, Zaw W, Molyneaux P, Desselberger U, Gray J (2002) Rotavirus gastroenteritis and central nervous system (CNS) infection: characterization of the VP7 and VP4 genes of rotavirus strains isolated from paired fecal and cerebrospinal fluid samples from a child with CNS disease. J Clin Microbiol 40:4797–4799
Jayaram H, Taraporewala Z, Patton JT, Prasad BV (2002) Rotavirus protein involved in genome replication and packaging exhibits a HIT-like fold. Nature 417:311–315
Jayaram H, Estes MK, Prasad BV (2004) Emerging themes in rotavirus cell entry, genome organization, transcription and replication. Virus Res 101:67–81
Kaljot KT, Shaw RD, Rubin DH, Greenberg HB (1988) Infectious rotavirus enters cells by direct cell membrane penetration, not by endocytosis. J Virol 62:1136–1144
Kapikian AZ (2002) Ecological studies, rotavirus vaccination, and intussusception. Lancet 359:1065–1066; author reply 1066
Kattoura M, Chen X, Patton J (1994) The rotavirus RNA-binding protein NS35 (NSP2) forms 10S multimers and interacts with the viral RNA polymerase. Virology 202:803–813
Keljo DJ, Kuhn M, Smith A (1988) Acidification of endosomes is not important for the entry of rotavirus into the cell. J Pediatr Gastroenterol Nutr 7:257–263
Kirkwood CD, Bishop RF, Coulson BS (1996) Human rotavirus VP4 contains strain-specific, serotype-specific and cross-reactive neutralization sites. Arch Virol 141:587–600
Kirkwood CD, Bishop RF, Coulson BS (1998) Attachment and growth of human rotaviruses RV-3 and S12/85 in Caco-2 cells depend on VP4. J Virol 72:9348–9352
Kohli E, Pothier P, Tosser G, Cohen J, Sandino AM, Spencer E (1993) In vitro reconstitution of rotavirus transcriptional activity using viral cores and recombinant baculovirus expressed VP6. Arch Virol 133:451–458
Labbe M, Charpilienne A, Crawford SE, Estes MK, Cohen J (1991) Expression of rotavirus VP2 produces empty corelike particles. J Virol 65:2946–2952
Lawton JA, Estes MK, Prasad BV (1997a) Three-dimensional visualization of mRNA release from actively transcribing rotavirus particles. Nat Struct Biol 4:118–121
Lawton JA, Zeng CQ, Mukherjee SK, Cohen J, Estes MK, Prasad BV (1997b) Three-dimensional structural analysisof recombinant rotavirus-like particles with intact and amino-terminal-deleted VP2: implications for the architecture of the VP2 capsid layer. J Virol 71:7353–7360
Lawton JA, Estes MK, Prasad BV (1999) Comparative structural analysis of transcriptionally competent and incompetent rotavirus-antibody complexes. Proc Natl Acad Sci U S A 96:5428–5433
Lawton JA, Estes MK, Prasad BV (2000) Mechanism of genome transcription in segmented dsRNA viruses. Adv Virus Res 55:185–229
Liemann S, Chandran K, Baker TS, Nibert ML, Harrison SC (2002) Structure of the reovirus membrane-penetration protein, Mu1, in a complex with is protector protein, Sigma3. Cell 108:283–295
Lima CD, Klein MG, Hendrickson WA (1997) Structure-based analysis of catalysis and substrate definition in the HIT protein family. Science 278:286–290
Lopez S, Arias CF (2004) Multistep entry of rotavirus into cells: a Versaillesque dance. Trends Microbiol 12:271–278
Lopez S, Arias CF, Bell JR, Strauss J H, Espejo RT (1985) Primary structure of the cleavage site associated with trypsin enhancement of rotavirus SA11 infectivity. Virology 144:11–19
Lopez T, Camacho M, Zayas M, Najera R, Sanchez R, Arias CF, Lopez S (2005) Silencing the morphogenesis of rotavirus. J Virol 79:184–192
Ludert JE, Feng N, Yu JH, Broome RL, Hoshino Y, Greenberg HB (1996) Genetic mapping indicates that VP4 is the rotavirus cell attachment protein in vitro and in vivo. J Virol 70:487–493
Ludert JE, Mason BB, Angel J, Tang B, Hoshino Y, Feng N, Vo PT, Mackow EM, Ruggeri FM, Greenberg HB (1998) Identification of mutations in the rotavirus protein VP4 that alter sialic-acid-dependent infection. J Gen Virol 79:725–729
Lynch M, Lee B, Azimi P, Gentsch J, Glaser C, Gilliam S, Chang HG, Ward R, Glass RI (2001) Rotavirus and central nervous system symptoms: cause or contaminant? Case reports and review. Clin Infect Dis 33:932–938
Lynch M, Shieh WJ, Tatti K, Gentsch JR, Ferebee-Harris T, Jiang B, Guarner J, Bresee J S, Greenwald M, Cullen S et al (2003) The pathology of rotavirus-associated deaths, using new molecular diagnostics. Clin Infect Dis 37:1327–1333
Mackow ER, Shaw RD, Matsui SM, Vo PT, Dang MN, Greenberg HB (1988) The rhesus rotavirus gene encoding protein VP3: location of amino acids involved in homologous and heterologous rotavirus neutralization and identification of a putative fusion region. Proc Natl Acad Sci U S A 85:645–649
Mathieu M, Petitpas I, Navaza J, Lepault J, Kohli E, Pothier P, Prasad BV, Cohen J, Rey FA (2001) Atomic structure of the major capsid protein of rotavirus: implications for the architecture of the virion. EMBO J 20:1485–1497
Mattion NM, Mitchell DB, Both GW, Estes MK (1991) Expression of rotavirus proteins encoded by alternative open reading frames of genome segment 11. Virology 181:295–304
Mattion NM, Cohen J, Aponte C, Estes MK (1992) Characterization of an oligomerization domain and RNA-binding properties on rotavirus nonstructural protein NS34. Virology 190:68–83
Meyer JC, Bergmann CC, Bellamy AR (1989) Interaction of rotavirus cores with the nonstructural glycoprotein NS28. Virology 171:98–107
Midthun K, Kapikian AZ (1996) Rotavirus vaccines: an overview. Clin Microbiol Rev 9:423–434
Modis Y, Ogata S, Clements D, Harrison SC (2004) Structure of the dengue virus envelope protein after membrane fusion. Nature 427:313–319
Moon HW(1994) Pathophysiology of viral diarrhea. In: Kapikian AZ (ed) Viral infections of the gastrointestinal trac. Marcel Dekker, New York, pp 27–52
Morrison C, Gilson T, Nuovo GJ (2001) Histologic distribution of fatal rotaviral infection: an immunohistochemical and reverse transcriptase in situ polymerase chain reaction analysis. Hum Pathol 32:216–221
Mukhopadhyay S, Kim BS, Chipman PR, Rossmann MG, Kuhn RJ (2003) Structure of West Nile virus. Science 302:248
Nakagawa A, Miyazaki N, Taka J, Naitow H, Ogawa A, Fujimoto Z, Mizuno H, Higashi T, Watanabe Y, Omura T et al (2003) The atomic structure of rice dwarf virus reveals the self-assembly mechanism of component proteins. Structure (Camb) 11:1227–1238
Nandi P, Charpilienne A, Cohen J (1992) Interaction of rotavirus particles with liposomes. J Virol 66:3363–3367
Nason EL, Samal SK, Venkataram Prasad BV (2000) Trypsin-induced structural transformation in aquareovirus. J Virol 74:6546–6555
Nason EL, Rothagel R, Mukherjee SK, Kar AK, Forzan M, Prasad BV, Roy P (2004) Interactions between the inner and outer capsids of bluetongue virus. J Virol 78:8059–8067
Nejmeddine M, Trugnan G, Sapin C, Kohli E, Svensson L, Lopez S, Cohen J (2000) Rotavirus spike protein VP4 is present at the plasma membrane and is associated with microtubules in infected cells. J Virol 74:3313–3320
O’Brien JA, Taylor JA, Bellamy AR (2000) Probing the structure of rotavirus NSP4: a short sequence at the extreme C terminus mediates binding to the inner capsid particle. J Virol 74:5388–5394
Padilla-Noriega L, Dunn SJ, Lopez S, Greenberg HB, Arias CF (1995) Identification of two independent neutralization domains on the VP4 trypsin cleavage products VP5* and VP8* of human rotavirus ST3. Virology 206:148–154
Pager C, Steele D, Gwamanda P, Driessen M (2000) A neonatal death associated with rotavirus infection-detection of rotavirus dsRNA in the cerebrospinal fluid. S Afr Med J 90:364–365
Parashar UD, Hummelman EG, Bresee JS, Miller MA, Glass RI (2003) Global illness and deaths caused by rotavirus disease in children. Emerg Infect Dis 9:565–572
Pesavento JB, Lawton JA, Estes ME, Venkataram Prasad BV (2001) The reversible condensation and expansion of the rotavirus genome. Proc Natl Acad Sci U S A 98:1381–1386
Pesavento JB, Billingsley AM, Roberts EJ, Ramig RF, Prasad BV (2003a) Structures of rotavirus reassortants demonstrate correlation of altered conformation of the VP4 spike and expression of unexpected VP4-associated phenotypes. J Virol 77:3291–3296
Pesavento JB, Estes MK, Prasad BV (2003b) Structural organization of the genome in rotavirus. In: Desselberger U (ed) Perspectives in medical virology 9: viral gastroenteritis Elsevier, London, pp 115–127
Pesavento J, Crawford SE, Roberts E, Estes MK, Prasad BV (2005) pH-Induced conformational change of the rotavirus VP4 spike: implications for cell entry and antibody neutralization. J Virol 79:8572–8580
Petrie BL, Greenberg HB, Graham DY, Estes MK (1984) Ultrastructural localization of rotavirus antigens using colloidal gold. Virus Res 1:133–152
Piron M, Vende P, Cohen J, Poncet D (1998) Rotavirus RNA-binding protein NSP3 interacts with eIF4GI and evicts the poly(A) binding protein from eIF4F. EMBO J 17:5811–5821
Piron M, Delaunay T, Grosclaude J, Poncet D (1999) Identification of the RNA-binding, dimerization, and eIF4GI-binding domains of rotavirus nonstructural protein NSP3. J Virol 73:5411–5421
Poncet D, Lindenbaum P, L’Haridon R, Cohen J (1997) In vivo and in vitro phosphorylation of rotavirus NSP5 correlates with its localization in viroplasms. J Virol 71:34–41
Prasad BVV, Estes MK (2000) Electron cryomicroscopy and computer image processing techniques: use in structure-function studies of rotavirus. Human Press, Totowa, NJ
Prasad BV, Prevelige PE Jr (2003) Viral genome organization. Adv Protein Chem 64:219–258
Prasad BV, Wang GJ, Clerx JP, Chiu W (1988) Three-dimensional structure of rotavirus. J Mol Biol 199:269–275
Prasad BV, Burns JW, Marietta E, Estes MK, Chiu W (1990) Localization of VP4 neutralization sites in rotavirus by three-dimensional cryo-electron microscopy. Nature 343:476–479
Prasad BV, Rothnagel R, Zeng CQ, Jakana J, Lawton JA, Chiu W, Estes MK (1996) Visualization of ordered genomic RNA and localization of transcriptional complexes in rotavirus. Nature 382:471–473
Reinisch KM, Nibert ML, Harrison SC (2000) Structure of the reovirus core at 3.6Å resolution. Nature 404:960–967
Ruiz MC, Alonso-Torre SR, Charpilienne A, Vasseur M, Michelangeli F, Cohen J, Alvarado F (1994) Rotavirus interaction with isolated membrane vesicles. J Virol 68:4009–4016
Sabara M, Gilchrist JE, Hudson GR, Babiuk LA (1985) Preliminary characterization of an epitope involved in neutralization and cell attachment that is located on the major bovine rotavirus glycoprotein. J Virol 53:58–66
Sapin C, Colard O, Delmas O, Tessier C, Breton M, Enouf V, Chwetzoff S, Ouanich J, Cohen J, Wolf C, Trugnan G (2002) Rafts promote assembly and atypical targeting of a nonenveloped virus, rotavirus, in Caco-2 cells. J Virol 76:4591–4602
Sasaki S, Horie Y, Nakagomi T, Oseto M, Nakagomi O (2001) Group C rotavirus NSP4 induces diarrhea in neonatal mice. Arch Virol 146:801–806
Shaw AL, Rothnagel R, Chen D, Ramig RF, Chiu W, Prasad BV (1993) Three-dimensional visualization of the rotavirus hemagglutinin structure. Cell 74:693–701
Silvestri LS, Taraporewala ZF, Patton JT (2004) Rotavirus replication: plus-sense templates for double-stranded RNA synthesis are made in viroplasms. JVirol 78:7763–7774
Taraporewala ZF, Patton JT (2001) Identification and characterization of the helixdestabilizing activity of rotavirus nonstructural protein NSP2. J Virol 75:4519–4527
Taraporewala ZF, Patton JT (2004) Nonstructural proteins involved in genome packaging and replication of rotaviruses and other members of the Reoviridae. Virus Res 101:57–66
Taraporewala Z, Chen D, Patton JT (1999) Multimers formed by the rotavirus nonstructural protein NSP2 bind to RNA and have nucleoside triphosphatase activity. J Virol 73:9934–9943
Taraporewala ZF, Chen D, Patton JT (2001) Multimers of the bluetongue virus nonstructural protein, NS2, possess nucleotidyl phosphatase activity: similarities between NS2 and rotavirus NSP2. Virology 280:221–231
Taylor JA, Meyer JC, Legge MA, O’Brien JA, Street JE, Lord VJ, Bergmann CC, Bellamy AR (1992) Transient expression and mutational analysis of the rotavirus intracellular receptor: the C-terminal methionine residue is essential for ligand binding. J Virol 66:3566–3572
Taylor JA, O’Brien JA, Lord VJ, Meyer JC, Bellamy AR (1993) The RER-localized rotavirus intracellular receptor: a truncated purified soluble form is multivalent and binds virus particles. Virology 194:807–814
Thouvenin E, Schoehn G, Rey F, Petitpas I, Mathieu M, Vaney MC, Cohen J, Kohli E, Pothier P, Hewat E (2001) Antibody inhibition of the transcriptase activity of the rotavirus DLP: a structural view. J Mol Biol 307:161–172
Tian P, Ball JM, Zeng CQ, Estes MK (1996) Rotavirus protein expression is important for virus assembly and pathogenesis. Arch Virol Suppl 12:69–77
Tihova M, Dryden KA, Bellamy AR, Greenberg HB, Yeager M (2001) Localization of membrane permeabilization and receptor binding sites on the VP4 hemagglutinin of rotavirus: implications for cell entry. J Mol Biol 314:985–992
Torres-Vega MA, Gonzalez RA, Duarte M, Poncet D, Lopez S, Arias CF (2000) The C-terminal domain of rotavirus NSP5 is essential for its multimerization, hyperphosphorylation and interaction with NSP6. J Gen Virol 81:821–830
Valenzuela S, Pizarro J, Sandino AM, Vasquez M, Fernandez J, Hernandez O, Patton J, Spencer E (1991) Photoaffinity labeling of rotavirus VP1 with 8-azido-ATP: identification of the viral RNA polymerase. J Virol 65:3964–3967
Vende P, Piron M, Castagne N, Poncet D (2000) Efficient translation of rotavirus mRNA requires simultaneous interaction of NSP3 with the eukaryotic translation initiation factor eIF4G and the mRNA 3′ end. J Virol 74:7064–7071
Welch SK, Crawford SE, Estes MK (1989) Rotavirus SA11 genome segment 11 protein is a nonstructural phosphoprotein. J Virol 63:3974–3982
Wentz MJ, Zeng CQ, Patton JT, Estes MK, Ramig RF (1996) Identification of the minimal replicase and the minimal promoter of (-)-strand synthesis, functional in rotavirus RNA replication in vitro. Arch Virol Suppl 12:59–67
Wiley DC, Skehel JJ (1987) The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu Rev Biochem 56:365–394
Yeager M, Dryden KA, Olson NH, Greenberg HB, Baker TS (1990) Three-dimensional structure of rhesus rotavirus by cryoelectron microscopy and image reconstruction. J Cell Biol 110:2133–2144
Yeager M, Berriman JA, Baker TS, Bellamy AR (1994) Three-dimensional structure of the rotavirus haemagglutinin VP4 by cryo-electron microscopy and difference map analysis. EMBO J 13:1011–1018
Zarate S, Espinosa R, Romero P, Guerrero CA, Arias CF, Lopez S (2000a) Integrin alpha2beta1 mediates the cell attachment of the rotavirus neuraminidase-resistant variant nar3. Virology 278:50–54
Zarate S, Espinosa R, Romero P, Mendez E, Arias CF, Lopez S (2000b) The VP5 domain of VP4 can mediate attachment of rotaviruses to cells. J Virol 74:593–599
Zeng CQ, Labbe M, Cohen J, Prasad BVV, Chen D, Ramig RF, Estes MK (1994) Characterization of rotavirus VP2 particles. Virology 201:55–65
Zhang H, Zhang J, Yu X, Lu X, Zhang Q, Jakana J, Chen DH, Zhang X, Zhou ZH (1999) Visualization of protein-RNA interactions in cytoplasmic polyhedrosis virus. J Virol 73:1624–1629
Zhang X, Walker SB, Chipman PR, Nibert ML, Baker TS (2003) Reovirus polymerase lambda 3 localized by cryo-electron microscopy of virions at a resolution of 7.6 A. Nat Struct Biol 10:1011–1018
Zhou ZH, Baker ML, Jiang W, Dougherty M, Jakana J, Dong G, Lu G, Chiu W (2001) Electron cryomicroscopy and bioinformatics suggest protein fold models for rice dwarf virus. Nat Struct Biol 8:868–873
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Pesavento, J.B., Crawford, S.E., Estes, M.K., Venkataram Prasad, B.V. (2006). Rotavirus Proteins: Structure and Assembly. In: Roy, P. (eds) Reoviruses: Entry, Assembly and Morphogenesis. Current Topics in Microbiology and Immunology, vol 309. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-30773-7_7
Download citation
DOI: https://doi.org/10.1007/3-540-30773-7_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30772-3
Online ISBN: 978-3-540-30773-0
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)