iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/11944836_9
Hardness of Approximation Results for the Problem of Finding the Stopping Distance in Tanner Graphs | SpringerLink
Skip to main content

Hardness of Approximation Results for the Problem of Finding the Stopping Distance in Tanner Graphs

  • Conference paper
FSTTCS 2006: Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2006)

Abstract

Tanner Graph representation of linear block codes is widely used by iterative decoding algorithms for recovering data transmitted across a noisy communication channel from errors and erasures introduced by the channel. The stopping distance of a Tanner graph T for a binary linear block code C determines the number of erasures correctable using iterative decoding on the Tanner graph T when data is transmitted across a binary erasure channel using the code C. We show that the problem of finding the stopping distance of a Tanner graph is hard to approximate within any positive constant approximation ratio in polynomial time unless P=NP. It is also shown as a consequence that there can be no approximation algorithm for the problem achieving an approximation ratio of \(2^{(\log n)^{1-\epsilon}}\) for any ε> 0 unless NP ⊆ DTIME(n poly(logn)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Di, C., Proietti, D., Telatar, I.E., Richardson, T.J., Urbanke, R.: Finite length analysis of low-density parity-check codes on the binary erasure channel. IEEE Trans. Inform. Theory 48(6), 1570–1579 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Tanner, M.: A recursive approach to low-complexity codes. IEEE Trans. Inform. Theory 27(5), 533–547 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  3. Di, C., Montanari, A., Urbanke, R.: Weight distribution of LDPC code ensembles: Combinatorics meets statistical physics. In: Proc. IEEE Int. Symp. Inform. Theory, Chicago, IL, July 2004, p. 102 (2004)

    Google Scholar 

  4. Orlitsky, A., Viswanathan, K., Shang, J.: Stopping set distribution of LDPC code ensembles. IEEE Trans. Inform. Theory 51(3), 929–953 (2005)

    Article  MathSciNet  Google Scholar 

  5. Tian, T., Jones, C., Villasenor, J.D., Wesel, R.D.: Construction of irregular LDPC codes with low error floors. In: Proc. ICC 2003, Seattle, Washington, May 2003, pp. 3125–3129 (2003)

    Google Scholar 

  6. Ramamoorthy, A., Wesel, R.: Construction of short block length irregular LDPC codes. In: Proc. ICC 2004, Paris, June 2004, pp. 410–414 (2004)

    Google Scholar 

  7. Schwartz, M., Vardy, A.: On the stopping distance and the stopping redundancy of codes. IEEE Trans. Inform. Theory 52(3), 922–932 (2006)

    Article  MathSciNet  Google Scholar 

  8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. W.H. Freeman, New York (1979)

    MATH  Google Scholar 

  9. Pishro-Nik, H., Fekri, F.: On decoding of low-density parity-check codes over the binary erasure channel. IEEE Trans. Inform. Theory 50(3), 439–454 (2004)

    Article  MathSciNet  Google Scholar 

  10. Han, J., Siegel, P.: Improved upper bounds on stopping redundancy (preprint), available at: http://www.arXiv.orgcs.IT/0511056

  11. Gallager, R.G.: Low density parity-check codes. MIT Press, Cambridge (1963)

    Google Scholar 

  12. Murali Krishnan, K., Shankar, P.: On the complexity of finding stopping distance in Tanner graphs (preprint), available at: http://www.arXiv.org , cs.IT/0512101

  13. Artin, M.: Algebra. Prentice-Hall, Englewood Cliffs (1991)

    Google Scholar 

  14. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2004)

    Google Scholar 

  15. Ausiello, G., et al.: Complexity and approximation: combinatorial optimization problems and their approximability properties. Springer, Heidelberg (2003)

    Google Scholar 

  16. Hochbaum, D. (ed.): Approximation algorithms for NP-hard problems. Course Technology (1996)

    Google Scholar 

  17. Dumer, I., Micciancio, D., Sudan, M.: Hardness of approximating the minimum distance of a linear code. IEEE Trans. Inform. Theory 49(1), 475–484 (2003)

    Article  MathSciNet  Google Scholar 

  18. Vardy, A.: The intractability of computing the minimum distance of a code. IEEE Trans. Inform. Theory 43(6), 1757–1766 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent intractability of certain coding problems. IEEE Trans. Inform. Theory 24(3), 384–386 (1978)

    Article  MATH  Google Scholar 

  20. Dinur, I., Kindler, G., Safra, S.: Approximating CVP to within almost polynomial factors in NP-hard. In: Proc. FOCS 1998, Palo Alto, California, November 1998, pp. 99–111 (1998)

    Google Scholar 

  21. Arora, S., Babai, L., Stern, J., Sweedyk, E.Z.: The hardness of approximate optima in lattices, codes and systems of linear equations. J. Comput. Sys. Sci. 54(2), 317–331 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krishnan, K.M., Chandran, L.S. (2006). Hardness of Approximation Results for the Problem of Finding the Stopping Distance in Tanner Graphs. In: Arun-Kumar, S., Garg, N. (eds) FSTTCS 2006: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2006. Lecture Notes in Computer Science, vol 4337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11944836_9

Download citation

  • DOI: https://doi.org/10.1007/11944836_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49994-7

  • Online ISBN: 978-3-540-49995-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics