Abstract
We present a novel structure tensor for matrix-valued images. It allows for user defined parameters that add flexibility to a number of image processing algorithms for the segmentation and smoothing of tensor fields. We provide a thorough theoretical derivation of the new structure tensor, including a proof of the equivalence of its unweighted version to the existing structure tensor from the literature. Finally, we demonstrate its advantages for segmentation and smoothing, both on synthetic tensor fields and on real DT-MRI data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Pierpaoli, C., Jezzard, P., Basser, P.J., Barnett, A., Di Chiro, G.: Diffusion tensor MR imaging of the human brain. Radiology 201, 637–648 (1996)
Feddern, C., Weickert, J., Burgeth, B.: Level-set methods for tensor-valued images. In: Faugeras, O.D., Paragios, N. (eds.) Proc. Second IEEE Workshop on Geometric and Level Set Methods in Computer Vision, pp. 65–72. INRIA, Nice, France (2003)
Feddern, C., Weickert, J., Burgeth, B., Welk, M.: Curvature-driven PDE methods for matrix-valued images. International Journal of Computer Vision 69, 93–107 (2006)
Chefd’hotel, C., Tschumperlé, D., Deriche, R., Faugeras, O.: Constrained flows of matrix-valued functions: Application to diffusion tensor regularization. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 251–265. Springer, Heidelberg (2002)
Welk, M., Feddern, C., Burgeth, B., Weickert, J.: Median filtering of tensor-valued images. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 17–24. Springer, Heidelberg (2003)
Westin, C.F., Knutsson, H.: Tensor field regularization using normalized convolution. In: Moreno-Diaz, R., Pichler, F. (eds.) EUROCAST 2003. LNCS, vol. 2809, pp. 564–572. Springer, Heidelberg (2003)
Rodríguez-Florido, M.A., Ruiz-Alzola, J., Westin, C.F.: DT-MRI regularization using anisotropic tensor field filtering. In: Proc. 2004 IEEE International Symposium on Biomedical Imaging, Arlington, VA, USA, pp. 336–339 (2004)
Wiegell, M.R., Tuch, D., Larsson, H.B., Wedeen, V.J.: Automatic segmentation of thalamic nuclei from diffusion tensor magnetic resonance imaging. NeuroImage 19, 391–401 (2003)
Rousson, M., Lenglet, C., Deriche, R.: Level set and region based surface propagation for diffusion tensor MRI segmentation. In: Sonka, M., Kakadiaris, I.A., Kybic, J. (eds.) CVAMIA/MMBIA 2004. LNCS, vol. 3117, pp. 123–134. Springer, Heidelberg (2004)
Wang, Z., Vemuri, B.C.: An affine invariant tensor dissimilarity measure and its applications to tensor-valued image segmentation. In: Proc. 2004 IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 228–233 (2004)
Jonasson, L., Bresson, X., Hagmann, P., Cuisenaire, O., Meuli, R., Thiran, J.P.: White matter fiber tract segmentation in DT-MRI using geometric flows. Medical Image Analysis 9, 223–236 (2005)
Kindlmann, G.L.: Visualization and Analysis of Diffusion Tensor Fields. PhD thesis, School of Computing, University of Utah (2004), http://www.cs.utah.edu/research/techreports/2004/pdf/UUCS-04-014.pdf
Di Zenzo, S.: A note on the gradient of a multi-image. Computer Vision, Graphics, and Image Processing 33, 116–125 (1986)
Basser, P.J., Pierpaoli, C.: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. Journal of Magnetic Resonance B, 209–219 (1996)
Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. In: Proc. Fifth International Conference on Computer Vision, pp. 694–699 (1995)
Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., Yezzi, A.: Gradient flows and geometric active contour models. In: Proc. Fifth International Conference on Computer Vision, pp. 810–815 (1995)
Weickert, J.: Anisotropic Diffusion in Image Processing, Teubner, Stuttgart (1998)
Kindlmann, G.L.: Superquadric tensor glyphs. In: Joint Eurographics/IEEE Symposium on Visualization, pp. 147–154 (2004)
Weickert, J., Kühne, G.: Fast methods for implicit active contour models. In: Osher, S., Paragios, N. (eds.) Geometric Level Set Methods in Imaging, Vision, and Graphics, pp. 43–58. Springer, New York (2003)
Sapiro, G.: Vector (self) snakes: a geometric framework for color, texture and multiscale image segmentation. In: Proc. 1996 International Conference on Image Processing, vol. 1, pp. 817–820 (1996)
BioPSE: Problem Solving Environment for modeling, simulation, image processing, and visualization for biomedical computing applications. Scientific Computing and Imaging Institute (SCI) (2002), http://software.sci.utah.edu/biopse.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Schultz, T., Burgeth, B., Weickert, J. (2006). Flexible Segmentation and Smoothing of DT-MRI Fields Through a Customizable Structure Tensor. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2006. Lecture Notes in Computer Science, vol 4291. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11919476_46
Download citation
DOI: https://doi.org/10.1007/11919476_46
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-48628-2
Online ISBN: 978-3-540-48631-2
eBook Packages: Computer ScienceComputer Science (R0)