iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/11919476_46
Flexible Segmentation and Smoothing of DT-MRI Fields Through a Customizable Structure Tensor | SpringerLink
Skip to main content

Flexible Segmentation and Smoothing of DT-MRI Fields Through a Customizable Structure Tensor

  • Conference paper
Advances in Visual Computing (ISVC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4291))

Included in the following conference series:

Abstract

We present a novel structure tensor for matrix-valued images. It allows for user defined parameters that add flexibility to a number of image processing algorithms for the segmentation and smoothing of tensor fields. We provide a thorough theoretical derivation of the new structure tensor, including a proof of the equivalence of its unweighted version to the existing structure tensor from the literature. Finally, we demonstrate its advantages for segmentation and smoothing, both on synthetic tensor fields and on real DT-MRI data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pierpaoli, C., Jezzard, P., Basser, P.J., Barnett, A., Di Chiro, G.: Diffusion tensor MR imaging of the human brain. Radiology 201, 637–648 (1996)

    Google Scholar 

  2. Feddern, C., Weickert, J., Burgeth, B.: Level-set methods for tensor-valued images. In: Faugeras, O.D., Paragios, N. (eds.) Proc. Second IEEE Workshop on Geometric and Level Set Methods in Computer Vision, pp. 65–72. INRIA, Nice, France (2003)

    Google Scholar 

  3. Feddern, C., Weickert, J., Burgeth, B., Welk, M.: Curvature-driven PDE methods for matrix-valued images. International Journal of Computer Vision 69, 93–107 (2006)

    Article  Google Scholar 

  4. Chefd’hotel, C., Tschumperlé, D., Deriche, R., Faugeras, O.: Constrained flows of matrix-valued functions: Application to diffusion tensor regularization. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 251–265. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Welk, M., Feddern, C., Burgeth, B., Weickert, J.: Median filtering of tensor-valued images. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 17–24. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Westin, C.F., Knutsson, H.: Tensor field regularization using normalized convolution. In: Moreno-Diaz, R., Pichler, F. (eds.) EUROCAST 2003. LNCS, vol. 2809, pp. 564–572. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Rodríguez-Florido, M.A., Ruiz-Alzola, J., Westin, C.F.: DT-MRI regularization using anisotropic tensor field filtering. In: Proc. 2004 IEEE International Symposium on Biomedical Imaging, Arlington, VA, USA, pp. 336–339 (2004)

    Google Scholar 

  8. Wiegell, M.R., Tuch, D., Larsson, H.B., Wedeen, V.J.: Automatic segmentation of thalamic nuclei from diffusion tensor magnetic resonance imaging. NeuroImage 19, 391–401 (2003)

    Article  Google Scholar 

  9. Rousson, M., Lenglet, C., Deriche, R.: Level set and region based surface propagation for diffusion tensor MRI segmentation. In: Sonka, M., Kakadiaris, I.A., Kybic, J. (eds.) CVAMIA/MMBIA 2004. LNCS, vol. 3117, pp. 123–134. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Wang, Z., Vemuri, B.C.: An affine invariant tensor dissimilarity measure and its applications to tensor-valued image segmentation. In: Proc. 2004 IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 228–233 (2004)

    Google Scholar 

  11. Jonasson, L., Bresson, X., Hagmann, P., Cuisenaire, O., Meuli, R., Thiran, J.P.: White matter fiber tract segmentation in DT-MRI using geometric flows. Medical Image Analysis 9, 223–236 (2005)

    Article  Google Scholar 

  12. Kindlmann, G.L.: Visualization and Analysis of Diffusion Tensor Fields. PhD thesis, School of Computing, University of Utah (2004), http://www.cs.utah.edu/research/techreports/2004/pdf/UUCS-04-014.pdf

  13. Di Zenzo, S.: A note on the gradient of a multi-image. Computer Vision, Graphics, and Image Processing 33, 116–125 (1986)

    Article  Google Scholar 

  14. Basser, P.J., Pierpaoli, C.: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. Journal of Magnetic Resonance B, 209–219 (1996)

    Google Scholar 

  15. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. In: Proc. Fifth International Conference on Computer Vision, pp. 694–699 (1995)

    Google Scholar 

  16. Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., Yezzi, A.: Gradient flows and geometric active contour models. In: Proc. Fifth International Conference on Computer Vision, pp. 810–815 (1995)

    Google Scholar 

  17. Weickert, J.: Anisotropic Diffusion in Image Processing, Teubner, Stuttgart (1998)

    Google Scholar 

  18. Kindlmann, G.L.: Superquadric tensor glyphs. In: Joint Eurographics/IEEE Symposium on Visualization, pp. 147–154 (2004)

    Google Scholar 

  19. Weickert, J., Kühne, G.: Fast methods for implicit active contour models. In: Osher, S., Paragios, N. (eds.) Geometric Level Set Methods in Imaging, Vision, and Graphics, pp. 43–58. Springer, New York (2003)

    Chapter  Google Scholar 

  20. Sapiro, G.: Vector (self) snakes: a geometric framework for color, texture and multiscale image segmentation. In: Proc. 1996 International Conference on Image Processing, vol. 1, pp. 817–820 (1996)

    Google Scholar 

  21. BioPSE: Problem Solving Environment for modeling, simulation, image processing, and visualization for biomedical computing applications. Scientific Computing and Imaging Institute (SCI) (2002), http://software.sci.utah.edu/biopse.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schultz, T., Burgeth, B., Weickert, J. (2006). Flexible Segmentation and Smoothing of DT-MRI Fields Through a Customizable Structure Tensor. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2006. Lecture Notes in Computer Science, vol 4291. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11919476_46

Download citation

  • DOI: https://doi.org/10.1007/11919476_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48628-2

  • Online ISBN: 978-3-540-48631-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics