iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/11881599_73
A General Fuzzy-Based Framework for Text Representation and Its Application to Text Categorization | SpringerLink
Skip to main content

A General Fuzzy-Based Framework for Text Representation and Its Application to Text Categorization

  • Conference paper
Fuzzy Systems and Knowledge Discovery (FSKD 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4223))

Included in the following conference series:

  • 1209 Accesses

Abstract

In this paper we develop the general framework for text representation based on fuzzy set theory. This work is extended from our original ideas [5],[4], in which a document is represented by a set of fuzzy concepts. The importance degree of these fuzzy concepts characterize the semantics of documents and can be calculated by a specified aggregation function of index terms. Based on this representation, a general framework is proposed and applied to text categorization problem. An algorithm is given in detail for choosing fuzzy concepts. Experiments on the real-world data set show that the proposed method is superior to the conventional method for text representation in text categorization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Billhardt, H., Bonajo, D., Maojo, V.: A context vector model for information retrieval. Journal of the American Society for Information Science and Technology (JASIST) 53(3), 236–249 (2002)

    Article  Google Scholar 

  2. Buell, D.A.: An analysys of some fuzzy subsets application to information retrieval systems. Fuzzy Sets and Systems 7(1), 35–42 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  3. Deerwester, S., Furnas, G.W., Dumais, S., Landauer, T.K.: Indexing by latent semantic indexing. Journal of the American Society for Information Science and Technology (JASIST) 41(6), 391–407 (1990)

    Article  Google Scholar 

  4. Doan, S.: A fuzzy-based approach to text representation in text categorization. In: Proceeding of 14th IEEE Int’l. Conference on Fuzzy Systems - FUZZ-IEEE 2005, Nevada, U.S., pp. 1008–1013 (2005)

    Google Scholar 

  5. Doan, S., Horiguchi, S.: A new text representation using fuzzy concepts in text categorization. In: Proceeding of 1st International Conference on Fuzzy Set and Knowledge Discovery (FSKD), Singapore, vol. 2, pp. 514–518 (2002)

    Google Scholar 

  6. CMU Text Learning Group. 20newsgroups dataset, http://www.cs.cmu.edu/~textlearning

  7. Joachims, T.: Text categorization with support vector machines: Learning with many relevant features. In: Proceedings 10th European Conference on Machine Learning (ECML), pp. 137–142 (1998)

    Google Scholar 

  8. Lewis, D.: Representation and Learning in Information Retrieval. PhD thesis, Graduate School of the University of Massachusetts (1991)

    Google Scholar 

  9. Lucarella, D., Marara, R.: First: fuzzy informatioon retrieval system. Journal of Information Science 17(2), 81–91 (1991)

    Article  Google Scholar 

  10. Manning, C.D., Schutze, H.: Foundations of Statistical Natural Language Processing. MIT Press, Cambridge (1999)

    MATH  Google Scholar 

  11. Miyamoto, S.: Fuzzy Sets in Information Retrieval and Cluster Analysis. Kluwer Academic Publishers, Dordrecht (1990)

    MATH  Google Scholar 

  12. Molinari, A., Pasi, G.: A fuzzy representation of html document for information retrieval system. In: Proceeding of 5th IEEE Int’l. Conference on Fuzzy Systems, pp. 107–112 (1996)

    Google Scholar 

  13. Moulinier, I.: A framework for comparing text categorization approaches. In: AAAI Symposium on Machine Learning and Information Access. Stanford University (1996)

    Google Scholar 

  14. Moulinier, I., Ganascia, J.G.: Applying an existing machine learning algorithm to text categorization. In: Wermter, S., Riloff, E., Schaler, G. (eds.) Connectionist, Statistical and Symbolic Approaches to Learning for Natural Language Processing, pp. 343–354. Springer, Heidelberg (1996)

    Google Scholar 

  15. Murai, T., Miyakoshi, M., Shimbo, M.: A fuzzy document retrieval method based on two-valued indexing. Fuzzy Sets and Systems 30(2), 103–120 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. Rocchio, J.: Relevance feedback in information retrieval. In: Salton, G. (ed.) The SMART retrieval system: Experiments on Automatic Document Processing, ch. 14, pp. 313–323. Prentice-Hall, Englewood Cliffs (1971)

    Google Scholar 

  17. Salton, G., Buckley, C.: Term weighting approaches in automatic text retrieval. Information Processing and Management 24(5), 513–523 (1988)

    Article  Google Scholar 

  18. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Communications of the ACM 18(11), 613–620 (1975)

    Article  MATH  Google Scholar 

  19. Sebastiani, F.: Machine learning in automated text categorization. ACM computing survey 34(1), 1–47 (2002)

    Article  Google Scholar 

  20. Sparck-Jones, K.A.: A statistical interpretation of term specifility and its application in retrieval. Journal of Documentation 28(1), 11–20 (1972)

    Article  Google Scholar 

  21. Witte, R., Bergler, S.: Fuzzy coreference resolution for summarization. In: Proceedings of 2003 International Symposium on Reference Resolution and Its Applications to Question Answering and Summarization (ARQAS), Venice, Italy, June 23–24, 2003, pp. 43–50. Università Ca’ Foscari (2003), http://rene-witte.net

  22. Yang, Y.: An evaluation of statistical approaches to text categorization. Information Retrieval Journal 1, 69–90 (1999)

    Article  Google Scholar 

  23. Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text categorization. In: Proceeding of the 14th International Conference on Machine Learning (ICML 1997), pp. 412–420 (1997)

    Google Scholar 

  24. Zadeh, L.A.: Fuzzy sets. Information Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Doan, S., Ha, QT., Horiguchi, S. (2006). A General Fuzzy-Based Framework for Text Representation and Its Application to Text Categorization. In: Wang, L., Jiao, L., Shi, G., Li, X., Liu, J. (eds) Fuzzy Systems and Knowledge Discovery. FSKD 2006. Lecture Notes in Computer Science(), vol 4223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11881599_73

Download citation

  • DOI: https://doi.org/10.1007/11881599_73

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45916-3

  • Online ISBN: 978-3-540-45917-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics