Abstract
The most accurate estimates of the activity of metabolic pathways are obtained by conducting isotopomer tracer experiments. The success of this method, however, is intimately dependent on the quality and amount of data on isotopomer distributions of intermediate metabolites. In this paper we present a novel method for discovering sets of metabolite fragments that always have identical isotopomer distributions, regardless of the velocities of the reactions in the metabolic network. We outline several applications of this equivalence concept, including improved propagation of measurements, experiment planning and consistency checking of metabolic network. Our computational experiments in measurement propagation indicate that the improvement via the use of this technique may be substantial.
Preliminary version ”Flow analysis of metabolite fragments for flux estimation” appeared in the proceedings of CMSB 2005 (Third International Workshop on Computational Methods in Systems Biology), Edinburgh.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Appel, A.: Modern Compiler Implementation in Java. Cambridge University Press, Cambridge (1998)
Arita, M.: In silico atomic tracing of substrate-product relationships in escherichia coli intermediary metabolism. Genome Research 13, 2455–2466 (2003)
Boros, L., Serkova, N., Cascante, M., Lee, W.-N.: Use of metabolic pathway flux information in targeted cancer drug design. Drug Discovery Today: Therapeutic Strategies 1(4), 435–443 (2004)
Christensen, B., Nielsen, J.: Isotopomer analysis using GC-MS. Metabolic Engineering 16, E8–E16 (1999)
Eisenreich, W., Slaghuis, J., Laupitz, R., Bussemer, J., Stritzker, J., Schwarz, C., Schwarz, R., Dankekar, T., Goebel, W., Bacher, A.: 13 c isotopologue perturbation studies of listeria monocytogenes carbon metabolism and its modulation by the virulence regulator PRFA. In: Proceedings of the National Academy of Sciences of the United States of America (PNAS), vol. 103, pp. 2040–2045 (2006)
Fisher, E., Zamboni, N., Sauer, U.: High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived 13 C constraints. Analytical Biochemistry 325, 308–316 (2004)
Ghosh, S., Zhu, T., Grossmann, I.E., Ataai, M.M., Domach, M.M.: Closing the loop between feasible flux scenario identification for construct evaluation and resolution of realized fluxes via NMR. Journal of Bacteriology 183, 1441–1451 (2001)
Harel, D.: A linear algorithm for finding dominators in flow graphs and related problems. In: Proceedings of the 17th annual ACM symposium on Theory of computing, pp. 185–194 (1985)
Isermann, N., Wiechert, W.: Metabolic isotopomer labeling systems. part ii: structural identifibiality analysis. Mathematical Biosciences 183, 175–214 (2003)
Kelleher, J.: Flux estimation using isotopic tracers: Common ground for metabolic physiology and metabolic engineering. Metabolic engineering 3, 100–110 (2001)
Klamt, S., Schuster, S.: Calculating as many fluxes as possible in underdetermined metabolic networks. Molecular Biology Reports 29, 243 (2002)
Lengauer, T., Tarjan, R.: A fast algorithm for finding dominators in a flowgraph. ACM Transactions on Programming Languages and Systems 1, 121–141 (1979)
Marx, A., de Graaf, A., Wiechert, W., Eggeling, L., Sahm, H.: Determination of the fluxes in the central metabolism of corynebacterium glutamicum by nuclear magnetic resonance spectroscopy combined with metabolite balancing. Biotechnology and Bioengineering 49, 111–129 (1996)
Möllney, M., Wiechert, W., Kownatzki, D., de Graaf, A.: Bidirectional reaction steps in metabolic networks IV: Optimal design of isotopomer labeling systems. Biotechnology and Bioengineering 66, 86–103 (1999)
Nielsen, J.: It is all about metabolic fluxes. Journal of Bacteriology 185 (2003)
Rantanen, A., Mielikäinen, T., Rousu, J., Maaheimo, H., Ukkonen, E.: Planning optimal measurements of isotopomer distributions for estimation of metabolic fluxes. Bioinformatics, Advance Access, February 27 (2006) (in print)
Rousu, J., Rantanen, A., Maaheimo, H., Pitkänen, E., Saarela, K., Ukkonen, E.: A method for estimating metabolic fluxes from incomplete isotopomer information. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 88–103. Springer, Heidelberg (2003)
Schmidt, K., Carlsen, M., Nielsen, J., Viladsen, J.: Modeling isotopomer distributions in biochemical networks using isotopomer mapping matrices. Biotechnology and Bioengineering 55, 831–840 (1997)
Schwarz, H.: Numerical Analysis: A Comprehensive Introduction. John Wiley & Sons, Chichester (1989)
Selivanov, V., Puigjaner, J., Sillero, A., Centelles, J., Ramos-Montoya, A., Lee, P., Cascante, M.: An optimized algorithm for flux estimation from isotopomer distribution in glucose metabolites. Bioinformatics 20, 3387–3397 (2004)
Sola, A., Maaheimo, H., Ylönen, K., Ferrer, P., Szyperski, T.: Amino acid biosynthesis and metabolic flux profiling of pichia pastoris. FEBS Journal 271, 2462–2470 (2004)
Stephanopoulos, G., Aristidou, A., Nielsen, J.: Metabolic engineering: Principles and Methodologies. Academic Press, London (1998)
Szyperski, T.: Biosynthetically directed fractional 13 C-labelling of proteinogenic amino acids. European Journal of Biochemistry 232, 433–448 (1995)
Szyperski, T., Glaser, R., Hochuli, M., Fiaux, J., Sauer, U., Bailey, J., Wütrich, K.: Bioreaction network topology and metabolic flux ratio analysis by biosynthetic fractional 13 C labeling and two-dimensional NMR spectrometry. Metabolic Engineering 1, 189–197 (1999)
Vallino, J.J., Stephanopoulos, G.: Metabolic flux distribution in corynebacterium glutamicum during growth and lysine overproduction. Biotechnology and Bioengineering 41, 633–646 (1993)
van Winden, W., Heijnen, J., Verheijen, P., Grievink, J.: A priori analysis of metabolic flux identifiability from (13)c-labeling data. Biotechnology and Bioengineering 74, 505–516 (2001)
Varma, A., Palsson, B.O.: Metabolic flux balancing: basic concepts, scientific and practical use. Nature Biotechnology 12, 994–998 (1994)
Wiechert, W.: Modeling and simulation: tools for metabolic engineering. Journal of Biotechnology 94, 37–63 (2002)
Wiechert, W., Möllney, M., Petersen, S., de Graaf, A.: A universal framework for 13 C metabolic flux analysis. Metabolic Engineering 3, 265–283 (2001)
Wiechert, W., Wurzel, M.: Metabolic isotopomer labeling systems part i: global dynamic behavior. Mathematical Biosciences 169, 173–205 (2001)
Wittmann, C., Heinzle, E.: Mass spectrometry for metabolic flux analysis. Biotechnology and Bioenginering 62, 739–750 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rantanen, A., Maaheimo, H., Pitkänen, E., Rousu, J., Ukkonen, E. (2006). Equivalence of Metabolite Fragments and Flow Analysis of Isotopomer Distributions for Flux Estimation. In: Priami, C., Plotkin, G. (eds) Transactions on Computational Systems Biology VI. Lecture Notes in Computer Science(), vol 4220. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11880646_9
Download citation
DOI: https://doi.org/10.1007/11880646_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-45779-4
Online ISBN: 978-3-540-46236-1
eBook Packages: Computer ScienceComputer Science (R0)