Abstract
This paper summarizes a new concept to determine principal curves for nonlinear principal component analysis (PCA). The concept is explained within the framework of the Hastie and Stuetzle algorithm and utilizes spline functions. The paper proposes a new algorithm and shows that it provides an efficient method to extract underlying information from measured data. The new method is geometrically simple and computationally expedient, as the number of unknown parameters increases linearly with the analyzed variable set. The utility of the algorithm is exemplified in two examples.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Delicado, P.: Another Look at Principal Curves and Surfaces. Commun. Stat. Part. B Simul. Comput. 77, 84–116 (2001)
Dong, D., McAvoy, T.J.: Non-Linear Principal Component Analysis – Based on Principal Curves and Neural Networks. Comp. Chem. Engng. 20(1), 65–78 (1996)
Hastie, T., Stuetzle, W.: Principal Curves. J. Am. Stat. Assoc. 84(406), 502–517 (1989)
Jia, F., Martin, E.B., Morris, A.J.: Non-Linear Principal Component Analysis with Applications to Process Fault Detection. Int. J. Syst. Sci. 31(11), 1473–1487 (2000)
Kegl, B., Krzyzak, A., Linder, T., Zeger, K.: Learning and Design of Principal Curves. IEEE Trans. Pattern. Anal. Mach. Intell. 22(3), 281–297 (2000)
Kramer, M.A.: Non-linear Principal Component Analysis using Auto-Associative Neural Networks. AIChE J. 37(2), 233–243 (1991)
MacGregor, J.F., Marlin, T.E., Kresta, J.V., Skagerberg, B.: Multivariate Statistical Methods in Process Analysis and Control. In: Proceedings of the 4th International Conference on Chemical Process Control, pp. 79–99. AIChE Publ. No. P-67, New York (1991)
Qin, S.J., McAvoy, T.J.: Nonlinear PLS Modelling Using Neural Networks. Comp. Chem. Engng. 16(4), 379–391 (1992)
Sharma, S.K., Irwin, G.W.: Fuzzy Coding of Genetic Algorithms. IEEE Trans. Evol. Comput. 7(4), 344–355 (2003)
Tibshirani, R.: Principal Curves Revisited. Stat. Comput. 2, 183–190 (1992)
Wilson, D.J.H., Irwin, G.W., Lightbody, G.: RBF Manifolds for Process Monitoring. IEEE Trans. Neural. Netw. 10(6), 1424–1434 (1999)
Wise, B.M., Gallagher, N.B.: The Process Chemometrics Approach to Process Monitoring and Fault Detection. J. Process. Control 6(6), 329–348 (1996)
Wold, S.: Spline functions in data analysis. Technometrics 16, 1–11 (1974)
Zhang, F.: Identifying Nonlinear Variation Patterns in Multivariate Manufacturing Processes, Ph.D. Thesis, Texas A&M University (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Antory, D., Kruger, U., Littler, T. (2006). A New Principal Curve Algorithm for Nonlinear Principal Component Analysis. In: Huang, DS., Li, K., Irwin, G.W. (eds) Intelligent Computing. ICIC 2006. Lecture Notes in Computer Science, vol 4113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11816157_155
Download citation
DOI: https://doi.org/10.1007/11816157_155
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-37271-4
Online ISBN: 978-3-540-37273-8
eBook Packages: Computer ScienceComputer Science (R0)