iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/11816157_155
A New Principal Curve Algorithm for Nonlinear Principal Component Analysis | SpringerLink
Skip to main content

A New Principal Curve Algorithm for Nonlinear Principal Component Analysis

  • Conference paper
Intelligent Computing (ICIC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4113))

Included in the following conference series:

  • 1726 Accesses

Abstract

This paper summarizes a new concept to determine principal curves for nonlinear principal component analysis (PCA). The concept is explained within the framework of the Hastie and Stuetzle algorithm and utilizes spline functions. The paper proposes a new algorithm and shows that it provides an efficient method to extract underlying information from measured data. The new method is geometrically simple and computationally expedient, as the number of unknown parameters increases linearly with the analyzed variable set. The utility of the algorithm is exemplified in two examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Delicado, P.: Another Look at Principal Curves and Surfaces. Commun. Stat. Part. B Simul. Comput. 77, 84–116 (2001)

    MATH  MathSciNet  Google Scholar 

  2. Dong, D., McAvoy, T.J.: Non-Linear Principal Component Analysis – Based on Principal Curves and Neural Networks. Comp. Chem. Engng. 20(1), 65–78 (1996)

    Article  Google Scholar 

  3. Hastie, T., Stuetzle, W.: Principal Curves. J. Am. Stat. Assoc. 84(406), 502–517 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Jia, F., Martin, E.B., Morris, A.J.: Non-Linear Principal Component Analysis with Applications to Process Fault Detection. Int. J. Syst. Sci. 31(11), 1473–1487 (2000)

    Article  MATH  Google Scholar 

  5. Kegl, B., Krzyzak, A., Linder, T., Zeger, K.: Learning and Design of Principal Curves. IEEE Trans. Pattern. Anal. Mach. Intell. 22(3), 281–297 (2000)

    Article  Google Scholar 

  6. Kramer, M.A.: Non-linear Principal Component Analysis using Auto-Associative Neural Networks. AIChE J. 37(2), 233–243 (1991)

    Article  Google Scholar 

  7. MacGregor, J.F., Marlin, T.E., Kresta, J.V., Skagerberg, B.: Multivariate Statistical Methods in Process Analysis and Control. In: Proceedings of the 4th International Conference on Chemical Process Control, pp. 79–99. AIChE Publ. No. P-67, New York (1991)

    Google Scholar 

  8. Qin, S.J., McAvoy, T.J.: Nonlinear PLS Modelling Using Neural Networks. Comp. Chem. Engng. 16(4), 379–391 (1992)

    Article  Google Scholar 

  9. Sharma, S.K., Irwin, G.W.: Fuzzy Coding of Genetic Algorithms. IEEE Trans. Evol. Comput. 7(4), 344–355 (2003)

    Article  Google Scholar 

  10. Tibshirani, R.: Principal Curves Revisited. Stat. Comput. 2, 183–190 (1992)

    Article  Google Scholar 

  11. Wilson, D.J.H., Irwin, G.W., Lightbody, G.: RBF Manifolds for Process Monitoring. IEEE Trans. Neural. Netw. 10(6), 1424–1434 (1999)

    Article  Google Scholar 

  12. Wise, B.M., Gallagher, N.B.: The Process Chemometrics Approach to Process Monitoring and Fault Detection. J. Process. Control 6(6), 329–348 (1996)

    Article  Google Scholar 

  13. Wold, S.: Spline functions in data analysis. Technometrics 16, 1–11 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  14. Zhang, F.: Identifying Nonlinear Variation Patterns in Multivariate Manufacturing Processes, Ph.D. Thesis, Texas A&M University (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Antory, D., Kruger, U., Littler, T. (2006). A New Principal Curve Algorithm for Nonlinear Principal Component Analysis. In: Huang, DS., Li, K., Irwin, G.W. (eds) Intelligent Computing. ICIC 2006. Lecture Notes in Computer Science, vol 4113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11816157_155

Download citation

  • DOI: https://doi.org/10.1007/11816157_155

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37271-4

  • Online ISBN: 978-3-540-37273-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics