iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/11816102_66
Using a Stochastic AdaBoost Algorithm to Discover Interactome Motif Pairs from Sequences | SpringerLink
Skip to main content

Using a Stochastic AdaBoost Algorithm to Discover Interactome Motif Pairs from Sequences

  • Conference paper
Computational Intelligence and Bioinformatics (ICIC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4115))

Included in the following conference series:

  • 1446 Accesses

Abstract

Protein interactome is an important research focus in the post-genomic era. The identification of interacting motif pairs is essential for exploring the mechanism of protein interactions. We describe a stochastic AdaBoost approach for discovering motif pairs from known interactions and pairs of proteins that are putatively not to interact. Our interacting motif pairs are validated by multiple-chain PDB structures and show more significant than those selected by traditional statistical method. Furthermore, in a cross-validated comparison, our model can be used to predict interactions between proteins with higher sensitivity (66.42%) and specificity (87.38%) comparing with the Naive Bayes model and the dominating model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Phizicky, E.M., Fields, S.: Protein-Protein Interactions: Methods for Detection and Analysis. Microbiol. Rev. 59(1), 94–123 (1995)

    Google Scholar 

  2. MacBeath, G., Schreiber, S.L.: Printing Proteins as Microarrays for High-Throughput Function Determination. Science 289(5485), 1760–1763 (2000)

    Google Scholar 

  3. Uetz, P., Giot, L., Cagney, G., et al.: A Comprehensive Analysis of Protein-Protein Interactions in Saccharomyces Cerevisiae. Nature 403(6770), 623–627 (2000)

    Article  Google Scholar 

  4. Ito, T., Chiba, T., Ozawa, R., et al.: A Comprehensive Two-Hybrid Analysis to Explore the Yeast Protein Interactome. Proc. Natl. Acad. Sci. U S A 98(8), 4569–4574 (2001)

    Article  Google Scholar 

  5. Zhu, H., Bilgin, M., Bangham, R., et al.: Global Analysis of Protein Activities Using Proteome Chips. Science 293(5537), 2101–2105 (2001)

    Article  Google Scholar 

  6. Gavin, A.C., Bosche, M., Krause, R., et al.: Functional Organization of the Yeast Proteome by Systematic Analysis of Protein Complexes. Nature 415(6868), 141–147 (2002)

    Article  Google Scholar 

  7. Ho, Y., Gruhler, A., Heilbut, A., et al.: Systematic Identification of Protein Complexes in Saccharomyces Cerevisiae by Mass Spectrometry. Nature 415(6868), 180–183 (2002)

    Article  Google Scholar 

  8. Mrowka, R., Patzak, A., Herzel, H.: Is There a Bias in Proteome Research? Genome. Res. 11(12), 1971–1973 (2001)

    Article  Google Scholar 

  9. Huynen, M.A., Bork, P.: Measuring Genome Evolution. Proc. Natl. Acad. Sci. U S A 95(11), 5849–5856 (1998)

    Article  Google Scholar 

  10. Pellegrini, M., Marcotte, E.M., Thompson, M.J., et al.: Assigning Protein Functions by Comparative Genome Analysis: Protein Phylogenetic Profiles. Proc. Natl. Acad. Sci. U S A 96(8), 4285–4288 (1999)

    Article  Google Scholar 

  11. Enright, A.J., Iliopoulos, I., Kyrpides, N.C., et al.: Protein Interaction Maps for Complete Genomes Based on Gene Fusion Events. Nature 402(6757), 86–90 (1999)

    Article  Google Scholar 

  12. Marcotte, E.M., Pellegrini, M., Ng, H.L., et al.: Detecting Protein Function and Protein-Protein Interactions from Genome Sequences. Science 285(5428), 751–753 (1999)

    Article  Google Scholar 

  13. Dandekar, T., Snel, B., Huynen, M., et al.: Conservation of Gene Order: A Fingerprint of Proteins that Physically Interact. Trends Biochem. Sci. 23(9), 324–328 (1998)

    Article  Google Scholar 

  14. Overbeek, R., Fonstein, M., D’Souza, M., et al.: The Use of Gene Clusters to Infer Functional Coupling. Proc. Natl. Acad. Sci. U S A 96(6), 2896–2901 (1999)

    Article  Google Scholar 

  15. Wojcik, J., Schachter, V.: Protein-Protein Interaction Map Inference Using Interacting Domain Profile Pairs. Bioinformatics 17(Suppl. 1), S296–S305 (2001)

    Google Scholar 

  16. Deng, M., Mehta, S., Sun, F., et al.: Inferring Domain-Domain Interactions from Protein-Protein Interactions. Genome. Res. 12(10), 1540–1548 (2002)

    Article  Google Scholar 

  17. Kim, W.K., Park, J., Suh, J.K.: Large Scale Statistical Prediction of Protein-Protein Interaction by Potentially Interacting Domain (pid) Pair. In: Genome Inform Ser Workshop Genome Inform, vol. 13, pp. 42–50 (2002)

    Google Scholar 

  18. Bock, J.R., Gough, D.A.: Whole-Proteome Interaction Mining. Bioinformatics 19(1), 125–134 (2003)

    Article  Google Scholar 

  19. Gomez, S.M., Rzhetsky, A.: Towards the Prediction of Complete Protein-Protein Interaction Networks. In: Pac. Symp. Biocomput., pp. 413–424 (2002)

    Google Scholar 

  20. Gomez, S.M., Noble, W.S., Rzhetsky, A.: Learning to Predict Protein-Protein Interactions from Protein Sequences. Bioinformatics 19(15), 1875–1881 (2003)

    Article  Google Scholar 

  21. Han, D.S., Kim, H.S., Jang, W.H., Lee, S.D., Suh, J.K.: PreSPI: A Domain Combination Based Prediction System for Protein-Protein Interaction. Nucleic Acids Res. 32(21), 6312–6320 (2004)

    Article  Google Scholar 

  22. Hayashida, M., Ueda, N., Akutsu, T.: Inferring Strengths of Protein-Protein Interactions from Experimental Data Using Linear Programming. Bioinformatics 19(Suppl. 2), II58–II65 (2003)

    Google Scholar 

  23. Ng, S.K., Zhang, Z., Tan, S.H.: Integrative Approach for Computationally Inferring Protein Domain Interactions. Bioinformatics 19(8), 923–929 (2003)

    Article  Google Scholar 

  24. Chen, X.W., Liu, M.: Prediction of Protein-Protein Interactions Using Random Decision Forest Framework. Bioinformatics 21(24), 4394–4400 (2005)

    Article  Google Scholar 

  25. Espadaler, J., Romero-Isart, O., Jackson, R.M., Oliva, B.: Prediction of Protein-Protein Interactions Using Distant Conservation of Sequence Patterns and Structure Relationships. Bioinformatics 21(16), 3360–3368 (2005)

    Article  Google Scholar 

  26. Liu, Y., Liu, N., Zhao, H.: Inferring Protein-Protein Interactions through High-Throughput Interaction Data from Diverse Organisms. Bioinformatics 21(15), 3279–3285 (2005)

    Article  Google Scholar 

  27. Nye, T.M., Berzuini, C., Gilks, W.R., Babu, M.M., Teichmann, S.A.: Statistical Analysis of Domains in Interacting Protein Pairs. Bioinformatics 21(7), 993–1001 (2005)

    Article  Google Scholar 

  28. Riley, R., Lee, C., Sabatti, C., Eisenberg, D.: Inferring Protein Domain Interactions from Databases of Interacting Proteins. Genome. Biol. 6(10), R89 (2005)

    Article  Google Scholar 

  29. Lehrach, W.P., Husmeier, D., Williams, C.K.: A Regularized Discriminative Model for the Prediction of Protein-Peptide Interactions. Bioinformatics 22(5), 532–540 (2006)

    Article  Google Scholar 

  30. Sprinzak, E., Margalit, H.: Correlated Sequence-Signatures as Markers of Protein-Protein Interaction. J. Mol. Biol. 311(4), 681–692 (2001)

    Article  Google Scholar 

  31. Wang, H., Segal, E., Ben-Hur, A., et al.: Identifying Protein-Protein Interaction Sites on a Genome-Wide Scale. In: Advances in Neural Information Processing Systems 17, pp. 1465–1472. MIT Press, Cambridge (2005)

    Google Scholar 

  32. Fang, J., Haasl, R.J., Dong, Y., Lushington, G.H.: Discover Protein Sequence Signatures from Protein-Protein Interaction Data. BMC Bioinformatics 6(1), 277 (2005)

    Article  Google Scholar 

  33. Falquet, L., Pagni, M., Bucher, P., et al.: The PROSITE Database, its Status in 2002. Nucleic Acids Res. 30(1), 235–238 (2002)

    Article  Google Scholar 

  34. Yu, H., Qian, M., Deng, M.: Understanding Protein-Protein Interactions: From Domain Level to Motif Level. In: Proceeding of Sino-Germany Conference: Network, From Biology to Theory, Springer, Heidelberg (2005)

    Google Scholar 

  35. Freund, Y., Schapire, R.E.: A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. Journal of Computer and System Sciences 55(1), 119–139 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  36. Salwinski, L., Miller, C.S., Smith, A.J., et al.: The Database of Interacting Proteins: 2004 Update. Nucleic Acids Res. 32(Database issue), D449–D451 (2004)

    Article  Google Scholar 

  37. Jansen, R., Gerstein, M.: Analyzing Protein Function on a Genomic Scale: The Importance of Gold-Standard Positives and Negatives for Network Prediction. Curr. Opin. Microbiol. 7(5), 535–545 (2004)

    Article  Google Scholar 

  38. Deshpande, N., Addess, K.J., Bluhm, W.F., et al.: The RCSB Protein Data Bank: A Redesigned Query System and Relational Database Based on the mmCIF Schema. Nucleic Acids Res. 33(Database issue), D233–D237 (2005)

    Article  Google Scholar 

  39. Taylor, W.R., Jones, D.T.: Deriving an Amino Acid Distance Matrix. J. Theor. Biol. 164(1), 65–83 (1993)

    Article  Google Scholar 

  40. Littlestone, N.: Learning Quickly when Irrelevant Attributes Abound: A New Linear-Threshold Algorithm. Machine Learning 2(4), 285–318 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yu, H., Qian, M., Deng, M. (2006). Using a Stochastic AdaBoost Algorithm to Discover Interactome Motif Pairs from Sequences. In: Huang, DS., Li, K., Irwin, G.W. (eds) Computational Intelligence and Bioinformatics. ICIC 2006. Lecture Notes in Computer Science(), vol 4115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11816102_66

Download citation

  • DOI: https://doi.org/10.1007/11816102_66

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37277-6

  • Online ISBN: 978-3-540-37282-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics