iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/11811305_44
A Novel Visual Clustering Algorithm for Finding Community in Complex Network | SpringerLink
Skip to main content

A Novel Visual Clustering Algorithm for Finding Community in Complex Network

  • Conference paper
Advanced Data Mining and Applications (ADMA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4093))

Included in the following conference series:

  • 2936 Accesses

Abstract

Complex network is an active research field in complex system in recent years. In this paper, we investigate the topological structure of complex networks and present a novel unsupervised visual clustering algorithm for finding community in complex networks. We firstly introduce a new distance between nodes to measure the dissimilarity between nodes and obtain the distance matrix. Then the rows (columns) of distance matrix are reordered according to the dissimilarity and the reordered matrix is displayed as an intensity image. Clusters are indicated by dark blocks of pixels along the main diagonal. The experiments show that our algorithm has good performance and can find the community structure hidden in complex networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R.: Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press (1996)

    Google Scholar 

  2. Gersho, A., Gray, R.M.: Vector Quantization and Signal Compression. Kluwer Academic, Boston (1992)

    Book  MATH  Google Scholar 

  3. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. John Wiley & Sons, New York (1973)

    MATH  Google Scholar 

  4. Watts, D., Strogatz, S.: Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  5. Barabasi, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  6. Newman, M.E.J.: Detecting Community Structure in Networks. Eur. Phys. J. B 38, 321–330 (2004)

    Article  Google Scholar 

  7. Bezdek, J.C., Hathaway, R.J.: VAT: A Tool for Visual Assessment of (Cluster) Tendency. In: Proc. IJCNN 2002, pp. 2225–2230. IEEE Press, Piscataway, NJ (2002)

    Google Scholar 

  8. Auber, D., Chiricota, Y., Jourdan, F., Melancon, G.: Multiscale visualization of small world networks. In: Proceedings of the 2003 IEEE Symposium on Information Visualization, pp. 75–81 (2003)

    Google Scholar 

  9. Holme, P., Kim, B.J.: Growing scale-free networks with tunable clustering. Phys. Rev. E 65, 026107 (2001)

    Article  Google Scholar 

  10. Klemm, K., Eguíluz, V.M.: Growing Scale-Free Networks with Small World Behavior. Phys. Rev. E. 65, 057102 (2002)

    Article  Google Scholar 

  11. Li, C., Maini, P.K.: An Evolving Network Model with Community Structure. Journal of Physics A: Mathematical and General 38(45), 9741–9749 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kanungo, et al.: An Efficient k-Means Clustering Algorithm: Analysis and Implementation. PAMI (24) (7), 881–892 (2002)

    Google Scholar 

  13. Yu, J.: [Jian]: General C-Means Clustering Model. PAMI (27) (8), 1197–1211 (2005)

    Google Scholar 

  14. Bradley, P.S., Fayyad, U.M.: Refining Initial Points for K-Means Clustering. In: Proceedings of the Fifteenth International Conference on Machine Learning, pp. 91–99 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, S., Luo, S., Li, J. (2006). A Novel Visual Clustering Algorithm for Finding Community in Complex Network. In: Li, X., Zaïane, O.R., Li, Z. (eds) Advanced Data Mining and Applications. ADMA 2006. Lecture Notes in Computer Science(), vol 4093. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11811305_44

Download citation

  • DOI: https://doi.org/10.1007/11811305_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37025-3

  • Online ISBN: 978-3-540-37026-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics