iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/11780342_11
An Invariant Cost Model for the Lambda Calculus | SpringerLink
Skip to main content

An Invariant Cost Model for the Lambda Calculus

  • Conference paper
Logical Approaches to Computational Barriers (CiE 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3988))

Included in the following conference series:

Abstract

We define a new cost model for the call-by-value lambda-calculus satisfying the invariance thesis. That is, under the proposed cost model, Turing machines and the call-by-value lambda-calculus can simulate each other within a polynomial time overhead. The model only relies on combinatorial properties of usual beta-reduction, without any reference to a specific machine or evaluator. In particular, the cost of a single beta reduction is proportional to the difference between the size of the redex and the size of the reduct. In this way, the total cost of normalizing a lambda term will take into account the size of all intermediate results (as well as the number of steps to normal form).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Asperti, A.: On the complexity of beta-reduction. In: Proc. 23rd ACM SIGPLAN Symposium on Principles of Programming Languages, pp. 110–118 (1996)

    Google Scholar 

  2. Asperti, A., Guerrini, S.: The Optimal Implementation of Functional Programming Languages. Cambridge Tracts in Theoretical Computer Science, vol. 45. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  3. Dal Lago, U., Hofmann, M.: Quantitative models and implicit complexity. In: Ramanujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 189–200. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Dal Lago, U., Martini, S.: An invariant cost model for the lambda calculus (2005) (extended Version) Available at: http://arxiv.org/cs.LO/0511045

  5. de Bruijn, N.G.: Lambda calculus with nameless dummies, a tool for automatic formula manipulation, with application to the church-rosser theorem. Indagationes Mathematicae 34(5), 381–392 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dezani-Ciancaglini, M., della Rocca, S.R., Saitta, L.: Complexity of lambda-terms reductions. RAIRO Informatique Theorique 13(3), 257–287 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  7. Frandsen, G.S., Sturtivant, C.: What is an efficient implementation of the lambda-calculus? In: Proc. 5th ACM Conference on Functional Programming Languages and Computer Architecture, pp. 289–312 (1991)

    Google Scholar 

  8. Lamping, J.: An algorithm for optimal lambda calculus reduction. In: Proc. 17th ACM SIGPLAN Symposium on Principles of Programming Languages, pp. 16–30 (1990)

    Google Scholar 

  9. Lawall, J.L., Mairson, H.G.: Optimality and inefficiency: What isn’t a cost model of the lambda calculus? In: Proc. 1996 ACM SIGPLAN International Conference on Functional Programming, pp. 92–101 (1996)

    Google Scholar 

  10. Lawall, J.L., Mairson, H.G.: On global dynamics of optimal graph reduction. In: Proc. 1997 ACM SIGPLAN International Conference on Functional Programming, pp. 188–195 (1997)

    Google Scholar 

  11. Lévy, J.-J.: Réductions corrected et optimales dans le lambda-calcul. Université Paris 7, Thèses d’Etat (1978)

    Google Scholar 

  12. Della Rocca, S.R., Paolini, L.: The parametric lambda-calculus. Texts in Theoretical Computer Science: An EATCS Series. Springer, Heidelberg (2004)

    Book  MATH  Google Scholar 

  13. van Emde Boas, P.: Machine models and simulation. In: Handbook of Theoretical Computer Science. Algorithms and Complexity (A), vol. A, pp. 1–66. MIT Press, Cambridge (1990)

    Google Scholar 

  14. Wadsworth, C.: Some unusual λ-calculus numeral systems. In: Seldin, J.P., Hindley, J.R. (eds.) To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism. Academic Press, London (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dal Lago, U., Martini, S. (2006). An Invariant Cost Model for the Lambda Calculus. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds) Logical Approaches to Computational Barriers. CiE 2006. Lecture Notes in Computer Science, vol 3988. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11780342_11

Download citation

  • DOI: https://doi.org/10.1007/11780342_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35466-6

  • Online ISBN: 978-3-540-35468-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics