Abstract
In this paper, a branch and bound algorithm for computing the treewidth of a graph is presented. The method incorporates extensions of existing results, and uses new pruning and reduction rules, based upon properties of the adopted branching strategy. We discuss how the algorithm can not only be used to obtain exact bounds for the treewidth, but also to obtain upper and/or lower bounds. Computational results of the algorithm are presented.
This work has been supported by the Netherlands Organization for Scientific Research NWO (project TACO: ’Treewidth And Combinatorial Optimization’).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amir, E.: Efficient approximation for triangulation of minimum treewidth. In: Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence, UAI 2001, Seattle, Washington, USA, pp. 7–15 (2001)
Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM Journal on Algebraic and Discrete Methods 8, 277–284 (1987)
Bachoore, E., Bodlaender, H.L.: New heuristics for upper bound of treewidth. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 216–227. Springer, Heidelberg (2005)
Becker, A., Geiger, D.: A sufficiently fast algorithm for finding close to optimal clique trees. Artificial Intelligence Journal 125, 3–17 (2001)
Bodlaender, H.L., Koster, A.M.C.A., van den Eijkhof, F.: Pre-processing rules for triangulation of probabilistic networks. Computational Intelligence 21(3), 286–305 (2005)
Bodlaender, H.L.: Discovering treewidth. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 1–16. Springer, Heidelberg (2005)
Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25, 1305–1317 (1996)
Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernetica 11(1-2), 1–21 (1993)
Bodlaender, H.L.: Necessary edges in k-chordalizations of graphs. Journal of Combinatorial Optimization 7, 283–290 (2003)
Bodlaender, H.L., Koster, A.M.C.A., Wolle, T.: Contraction and treewidth lower bounds. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 628–639. Springer, Heidelberg (2004)
van den Eijkhof, F., Bodlaender, H.L., Koster, A.M.C.A.: Safe reduction rules for weighted treewidth. In: Kučera, L. (ed.) WG 2002. LNCS, vol. 2573, pp. 176–185. Springer, Heidelberg (2002)
Clautiaux, F., Moukrim, A., Négre, S., Carlier, J.: Heuristic and meta-heuristic methods for computing graph treewidth. RAIRO Operations Research 38, 13–26 (2004)
Gogate, V., Dechter, R.: A complete any time algorithm for treewidth. In: Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, Banff, Canada, pp. 201–208. AUAI Press, Arlington (2004)
Koster, A.M.C.A., Bodlaender, H.L., van Hoesel, S.: Treewidth: Computational experiments. In: Electronic Notes in Discrete Mathematics, vol. 8. Elsevier, Amsterdam (2001)
Ramachandramurthi, S.: The structure and number of obstructions to treewidth. SIAM J. Disc. Math. 10, 146–157 (1997)
Röhrig, H.: Tree decomposition: A feasibility study. Master’s thesis, Max-Planck-Institut für Informatik, Saarbrücken, Germany (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bachoore, E.H., Bodlaender, H.L. (2006). A Branch and Bound Algorithm for Exact, Upper, and Lower Bounds on Treewidth. In: Cheng, SW., Poon, C.K. (eds) Algorithmic Aspects in Information and Management. AAIM 2006. Lecture Notes in Computer Science, vol 4041. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11775096_24
Download citation
DOI: https://doi.org/10.1007/11775096_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35157-3
Online ISBN: 978-3-540-35158-0
eBook Packages: Computer ScienceComputer Science (R0)