iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/11740698_24
Applications of Racing Algorithms: An Industrial Perspective | SpringerLink
Skip to main content

Applications of Racing Algorithms: An Industrial Perspective

  • Conference paper
Artificial Evolution (EA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3871))

Abstract

Stochastic local search (SLS) methods like evolutionary algorithms, ant colony optimisation or iterated local search receive an ever increasing attention for the solution of highly application relevant optimisation problems. Despite their noteworthy successes, several issues still hinder their even wider spread. One central issue is the configuration and parameterisation of SLS methods, which is known to be a time- and personal-intensive process. Recently, several attempts have been made to automate the tuning of SLS algorithms. One of the most promising directions is the usage of the racing methodology, which is a statistical method for selecting promising candidate configurations. We present results of a study on the application of this methodology to the tuning of a complex SLS method for an industrial vehicle scheduling and routing problem, and compare the performance of two racing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hoos, H.H., Stützle, T.: Stochastic Local Search—Foundations and Applications. Morgan Kaufmann, San Francisco (2004)

    MATH  Google Scholar 

  2. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1996)

    MATH  Google Scholar 

  3. Moscato, P., Cotta, C.: A gentle introduction to memetic algorithms. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics, pp. 105–144. Kluwer Academic Publishers, Norwell (2002)

    Google Scholar 

  4. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)

    MATH  Google Scholar 

  5. Lourenço, H.R., Martin, O., Stützle, T.: Iterated local search. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics, pp. 321–353. Kluwer Academic Publishers, Norwell (2002)

    Google Scholar 

  6. Xu, J., Chiu, S.Y., Glover, F.: Fine-tuning a tabu search algorithm with statistical tests. International Transactions in Operational Research 5(4), 233–244 (1998)

    Article  Google Scholar 

  7. Coy, S.P., Golden, B.L., Runger, G.C., Wasil, E.A.: Using experimental design to find effective parameter settings for heuristics. Journal of Heuristics 7(1), 77–97 (2001)

    Article  MATH  Google Scholar 

  8. Adenso-Díaz, B., Laguna, M.: Fine-tuning of algorithms using fractional experimental designs and local search. Operations Research (in press)

    Google Scholar 

  9. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: Langdon, W.B., others (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2002), pp. 11–18. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  10. Birattari, M.: The Problem of Tuning Metaheuristics. PhD thesis, IRIDIA, Université Libre de Bruxelles, Belgium (2004)

    Google Scholar 

  11. Siegel, S., Jr., N.J.C., Castellan, N.J.: Nonparametric Statistics for the Behavioral Sciences, 2nd edn. McGraw Hill, New York (2000)

    MATH  Google Scholar 

  12. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures. Chapman & Hall / CRC (2000)

    Google Scholar 

  13. Chiarandini, M., Birattari, M., Socha, K., Rossi-Doria, O.: An effective hybrid approach for the university course timetabling problem. Journal of Scheduling (submitted)

    Google Scholar 

  14. Maron, O., Moore, A.W.: Hoeffding races: Accelerating model selection search for classification and function approximation. In: Cowan, J.D., Tesauro, G., Alspector, J. (eds.) Advances in Neural Information Processing Systems, vol. 6, pp. 59–66. Morgan Kaufmann Publishers, Inc, San Francisco (1994)

    Google Scholar 

  15. Moore, A.W., Lee, M.S.: Efficient algorithms for minimizing cross validation error. In: International Conference on Machine Learning, pp. 190–198. Morgan Kaufmann Publishers, Inc., San Francisco (1994)

    Google Scholar 

  16. Conover, W.J.: Practical Nonparametric Statistics, 3rd edn. John Wiley & Sons, New York (1999)

    Google Scholar 

  17. Toth, P., Vigo, D. (eds.): The Vehicle Routing Problem. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Becker, S., Gottlieb, J., Stützle, T. (2006). Applications of Racing Algorithms: An Industrial Perspective. In: Talbi, EG., Liardet, P., Collet, P., Lutton, E., Schoenauer, M. (eds) Artificial Evolution. EA 2005. Lecture Notes in Computer Science, vol 3871. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11740698_24

Download citation

  • DOI: https://doi.org/10.1007/11740698_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33589-4

  • Online ISBN: 978-3-540-33590-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics