iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/11682462_62
Packing Dicycle Covers in Planar Graphs with No K 5–e Minor | SpringerLink
Skip to main content

Packing Dicycle Covers in Planar Graphs with No K 5e Minor

  • Conference paper
LATIN 2006: Theoretical Informatics (LATIN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3887))

Included in the following conference series:

  • 1015 Accesses

Abstract

We prove that the minimum weight of a dicycle is equal to the maximum number of disjoint dicycle covers, for every weighted digraph whose underlying graph is planar and does not have K 5e as a minor (K 5e is the complete graph on five vertices, minus one edge). Equality was previously known when forbidding K 4 as a minor, while an infinite number of weighted digraphs show that planarity does not guarantee equality. The result also improves upon results known for Woodall’s Conjecture and the Edmonds-Giles Conjecture for packing dijoins. Our proof uses Wagner’s characterization of planar 3-connected graphs that do not have K 5e as a minor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Guenin, B., Williams, A.: Advances in packing directed joins. In: Second Brazilian Symposium on Graphs, Algorithms and Combinatorics. Electronic Notes in Discrete Mathematics, vol. 7, pp. 212–218 (2005)

    Google Scholar 

  2. Edmonds, J., Giles, R.: A min-max relation for submodular functions on graphs. Annals of Discrete Math. 1, 185–204 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  3. Feofiloff, P.: Disjoint Transversals of Directed Coboundaries. PhD thesis, University of Waterloo, Ontario, Canada (1983)

    Google Scholar 

  4. Feofiloff, P., Younger, D.H.: Directed cut transversal packing for source-sink connected graphs. Combinatorica 7(3), 255–263 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Guenin, B., Cornuejols, G.: A note on dijoins. Discrete Math. 243, 213–216 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lucchesi, C.L., Younger, D.H.: A minimax relation for directed graphs. J. London Math. Soc. 17(2), 369–374 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. Menger, K.: Zur allgemeinen kurventheoric. Fund. Math. 10, 96–115 (1927)

    Article  MATH  Google Scholar 

  8. Wakabayashi, Y., Lee, O.: A note on a min-max conjecture of Woodall. J. Graph Theory 38, 36–41 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Schrijver, A.: A counterexample to a conjecture of Edmonds and Giles. Discrete Math. 32, 213–214 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. Schrijver, A.: Min-max relations for directed graphs. Annals of Discrete Math. 16, 261–280 (1982)

    MathSciNet  MATH  Google Scholar 

  11. Wagner, K.: Bemerkungen zu hadwigers vermutung. Ath. Ann. 141, 433–451 (1960)

    MathSciNet  MATH  Google Scholar 

  12. Williams, A.M.: Packing directed joins. Masters thesis, University of Waterloo, Ontario, Canada (2003)

    Google Scholar 

  13. Woodall, D.R.: Menger and Konig systems. In: Theory and Applications of Graphs. Lecture notes in Mathematics, vol. 642, pp. 620–635. Springer, Heidelberg (1978)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, O., Williams, A. (2006). Packing Dicycle Covers in Planar Graphs with No K 5e Minor. In: Correa, J.R., Hevia, A., Kiwi, M. (eds) LATIN 2006: Theoretical Informatics. LATIN 2006. Lecture Notes in Computer Science, vol 3887. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11682462_62

Download citation

  • DOI: https://doi.org/10.1007/11682462_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32755-4

  • Online ISBN: 978-3-540-32756-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics