iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/11612704_23
Clustering Spherical Shells by a Mini-Max Information Algorithm | SpringerLink
Skip to main content

Clustering Spherical Shells by a Mini-Max Information Algorithm

  • Conference paper
Computer Vision – ACCV 2006 (ACCV 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3852))

Included in the following conference series:

Abstract

We focus on spherical shells clustering by a mini-max information (MMI) clustering algorithm based on mini-max optimization of mutual information (MI). The minimization optimization leads to a mass constrained deterministic annealing (DA) approach, which is independent of the choice of the initial data configuration and has the ability to avoid poor local optima. The maximization optimization provides a robust estimation of probability soft margin to phase out outliers. Furthermore, a novel cluster validity criteria is estimated to determine an optimal cluster number of spherical shells for a given set of data. The effectiveness of MMI algorithm for clustering spherical shells is demonstrated by experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blahut, R.E.: Computation of Channel Capacity and Rate-Distortion Functions. IEEE Tran. on Information Theory 18, 460–473 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  2. Blahut, R.E.: Princinple and practice of information theory. Addison-Wesley, Reading (1987)

    Google Scholar 

  3. Dave, R.N.: Fuzzy shell-clustering and applications to circle detection in digital images. Int. J. General Systems 16, 343–355 (1990)

    Article  MathSciNet  Google Scholar 

  4. Dave, R.N.: Validating fuzzy partitions obtained through c-shells clustering. Pattern Recognition Letters 17, 613–623 (1996)

    Article  Google Scholar 

  5. Krishnapuram, R., Nasraoui, O., Frigui, H.: The fuzzy c-spherical shells algorithm: a new approach. IEEE Trans. Neural Networks 3, 663–671 (1992)

    Article  Google Scholar 

  6. Man, Y., Gath, I.: Detection and Separation of Ring-Shaped Clusters Using Fuzzy Clustering. IEEE Trans. Pattern Analysis and Machine Intelligence 16, 855–861 (1994)

    Article  Google Scholar 

  7. Rose, K., Gurewitz, E., Fox, G.C.: Statistical mechanics and phase transitions in clustering. Physical Review letters 65, 945–948 (1990)

    Article  Google Scholar 

  8. Rose, K.: Deterministic annealing for clustering, compression, classification, regression, and related optimization problems. Proc. of IEEE, 86, 2210–2239 (1998)

    Google Scholar 

  9. Song, Q.: A robust information clustering algorithm. Neural Computation 17, 2672–2698 (2005)

    Article  MATH  Google Scholar 

  10. Vapnik, V.N.: Statistical Learning Theory. John Wiley and Sons, NY (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, X., Song, Q., Zhang, W., Wang, Z. (2006). Clustering Spherical Shells by a Mini-Max Information Algorithm. In: Narayanan, P.J., Nayar, S.K., Shum, HY. (eds) Computer Vision – ACCV 2006. ACCV 2006. Lecture Notes in Computer Science, vol 3852. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11612704_23

Download citation

  • DOI: https://doi.org/10.1007/11612704_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31244-4

  • Online ISBN: 978-3-540-32432-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics