iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/11590156_22
When Are Timed Automata Weakly Timed Bisimilar to Time Petri Nets? | SpringerLink
Skip to main content

When Are Timed Automata Weakly Timed Bisimilar to Time Petri Nets?

  • Conference paper
FSTTCS 2005: Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2005)

Abstract

In this paper, we compare Timed Automata (TA) with Time Petri Nets (TPN) with respect to weak timed bisimilarity. It is already known that the class of bounded TPNs is included in the class of TA. It is thus natural to try and identify the (strict) subclass \({\cal TA}^{wtb}\) of TA that is equivalent to TPN for the weak time bisimulation relation. We give a characterisation of this subclass and we show that the membership problem and the reachability problem for \({\cal TA}^{wtb}\) are PSPACE-complete. Furthermore we show that for a TA in \({\cal TA}^{wtb}\) with integer constants, an equivalent TPN can be built with integer bounds but with a size exponential w.r.t. the original model. Surprisingly, using rational bounds yields a TPN whose size is linear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aceto, L., Laroussinie, F.: Is Your Model Checker on Time? On the Complexity of Model Checking for Timed Modal Logics. In: Journal of Logic and Algebraic Programming, vol. 52-53, pp. 7–51. Elsevier Science Publishers, Amsterdam (august 2002)

    Google Scholar 

  2. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science B 126, 183–235 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aura, T., Lilius, J.: A causal semantics for time Petri nets. Theoretical Computer Science 243(1-2), 409–447 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bérard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H.: Comparison of Different Semantics for Time Petri Nets. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 293–307. Springer, Heidelberg (2005) (to appear)

    Chapter  Google Scholar 

  5. Bérard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H.: Comparison of the Expressiveness of Timed Automata and Time Petri Nets. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 211–225. Springer, Heidelberg (2005) (to appear)

    Chapter  Google Scholar 

  6. Bérard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H.: Comparison of the Expressiveness of Timed Automata and Time Petri Nets (2005), Research Report IRCCyN R2005-2 available at http://www.lamsade.dauphine.fr/~haddad/publis.html

  7. Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems using time Petri nets. IEEE Transactions on Software Engineering 17(3), 259–273 (1991)

    Article  MathSciNet  Google Scholar 

  8. Cassez, F., Roux, O.H.: Structural Translation of Time Petri Nets into Timed Automata. In: Huth, M. (ed.) Workshop on Automated Verification of Critical Systems (AVoCS 2004). Electronic Notes in Computer Science, Elsevier, Amsterdam (August 2004)

    Google Scholar 

  9. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, Springer, Heidelberg (1989)

    Google Scholar 

  10. Haar, S., Simonot-Lion, F., Kaiser, L., Toussaint, J.: Equivalence of Timed State Machines and safe Time Petri Nets. In: Proceedings of WODES 2002, Zaragoza, Spain, pp. 119–126 (2002)

    Google Scholar 

  11. Lime, D., Roux, O.H.: State class timed automaton of a time Petri net. In: PNPM 2003, September 2003, IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

  12. Merlin, P.M.: A study of the recoverability of computing systems. Ph.D thesis, University of California, Irvine, CA (1974)

    Google Scholar 

  13. Pezzé, M., Young, M.: Time Petri Nets: A Primer Introduction. In: Tutorial presented at the Multi-Workshop on Formal Methods in Performance Evaluation and Applications, Zaragoza, Spain (September 1999)

    Google Scholar 

  14. Ramchandani, C.: Analysis of asynchronous concurrent systems by timed Petri nets. Ph.D thesis, Massachusetts Institute of Technology, Cambridge, MA (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bérard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H. (2005). When Are Timed Automata Weakly Timed Bisimilar to Time Petri Nets?. In: Sarukkai, S., Sen, S. (eds) FSTTCS 2005: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2005. Lecture Notes in Computer Science, vol 3821. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11590156_22

Download citation

  • DOI: https://doi.org/10.1007/11590156_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30495-1

  • Online ISBN: 978-3-540-32419-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics