iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/11590156_21
Refining the Undecidability Frontier of Hybrid Automata | SpringerLink
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3821))

Abstract

Reachability becomes undecidable in hybrid automata (HA) that can simulate a Turing (TM) or Minsky (MM) machine. Asarin and Schneider have shown that, between the decidable 2-dim Piecewise Constant Derivative (PCD) class and the undecidable 3-dim PCD class, there lies the “open” class 2-dim Hierarchical PCD (HPCD). This class was shown to be equivalent to the class of 1-dim Piecewise Affine Maps (PAM). In this paper, we first explore 2-dim HPCD’s proximity to decidability, by showing that they are equivalent to 2-dim PCDs with translational resets, and to HPCDs without resets. A hierarchy of intermediates also equivalent to the HPCD class is presented, revealing semblance to timed and initialized rectangular automata. We then explore the proximity to the undecidability frontier. We show that 2-dim HPCDs with zeno executions or integer-checks can simulate the 2-counter MM. We conclude by retreating HPCDs as PAMs, to derive a simple over-approximating algorithm for reachability. This also defines a decidable subclass 1-dim Onto PAM (oPAM). The novel non-trivial transformation of 2-dim HPCDs into “almost decidable” systems, is likely to pave the way for approximate reachability algorithms, and the characterization of decidable subclasses. It is hoped that these ideas eventually coalesce into a complete understanding of the reachability problem for the class 2-dim HPCD (1-dim PAM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The Algorithmic Analysis of Hybrid Systems. Theoretical Computer Science 138, 3–34 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alur, R., Dill, D.L.: A Theory of Timed Automata. TCS 126, 183–235 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems having piecewise-constant derivatives. Theoretical Computer Science 138, 35–65 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Asarin, E., Schneider, G.: Widening the boundary between decidable and undecidable hybrid systems. In: Brim, L., Jančar, P., Křetínský, M., Kucera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 193–208. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Asarin, E., Schneider, G., Yovine, S.: On the decidability of the reachability problem for planar differential inclusions. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 89–104. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Berard, B., Dufourd, C.: Timed automata and additive clock constraints. Information Processing Letter 75(1-2), 1–7 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Henzinger, T., Kopke, P.W., Puri, A., Varaiya, P.: What’s Decidable about Hybrid Automata. In: Symposium on the Theory of Computing (STOC), pp. 373–382 (1995)

    Google Scholar 

  8. Henzinger, T.A., Sastry, S.: Hybrid Systems-Computation and Control. In: Henzinger, T.A., Sastry, S.S. (eds.) HSCC 1998. LNCS, vol. 1386, Springer, Heidelberg (1998)

    Google Scholar 

  9. Koiran, P.: My favourte problems (1999), http://perso.ens-lyon.fr/pascal.koiran/problems.html

  10. Lafferiere, G., Pappas, G.J., Sastry, S.: O-minimal Hybrid Systems. Mathematics of Control, Signals, and Systems 13(1), 1–21 (2000)

    Article  MathSciNet  Google Scholar 

  11. Lafferriere, G., Pappas, G.J., Yovine, S.: Symbolic reachability computation for families of linear vector fields. J. Symb. Comput. 32(3), 231–253 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Maler, O., Pnueli, A.: Reachability analysis of planar multi-linear systems. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, Springer, Heidelberg (1993)

    Google Scholar 

  13. Minsky, M.L.: Recursive unsolvability of post’s problem of tag and other topics in theory of turing machines. Ann. of Math. 74, 437–455 (1961)

    Article  MathSciNet  Google Scholar 

  14. Mysore, V., Mishra, B.: Algorithmic Algebraic Model Checking III: Approximate Methods. Infinity (2005)

    Google Scholar 

  15. Piazza, C., Antoniotti, M., Mysore, V., Policriti, A., Winkler, F., Mishra, B.: Algorithmic Algebraic Model Checking I: The Case of Biochemical Systems and their Reachability Analysis. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 5–19. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Puri, A., Varaiya, P.: Decidebility of hybrid systems with rectangular differential inclusions. Computer Aided Verification, pp. 95–104 (1994)

    Google Scholar 

  17. Schneider, G.: Algorithmic Analysis of Polygonal Hybrid Systems. Ph.D. thesis. VERIMAG - UJF, Grenoble, France (2002)

    Google Scholar 

  18. Tabuada, P., Pappas, G.J.: Model checking ltl over controllable linear systems is decidable. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 498–513. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Teschl, G.: Ordinary differential equations and dynamical systems (2004), Lecture Notes from http://www.mat.univie.ac.at/gerald/ftp/book-ode/index.html

  20. Turing, A.: On computable numbers, with an application to the entscheidungs problem. Proceedings of the London Mathematical Society 2(42), 230–265 (1936)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mysore, V., Pnueli, A. (2005). Refining the Undecidability Frontier of Hybrid Automata. In: Sarukkai, S., Sen, S. (eds) FSTTCS 2005: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2005. Lecture Notes in Computer Science, vol 3821. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11590156_21

Download citation

  • DOI: https://doi.org/10.1007/11590156_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30495-1

  • Online ISBN: 978-3-540-32419-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics