iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/11558958_73
Applying Parallel Direct Solver Techniques to Build Robust High Performance Preconditioners | SpringerLink
Skip to main content

Applying Parallel Direct Solver Techniques to Build Robust High Performance Preconditioners

  • Conference paper
Applied Parallel Computing. State of the Art in Scientific Computing (PARA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3732))

Included in the following conference series:

Abstract

The purpose of our work is to provide a method which exploits the parallel blockwise algorithmic approach used in the framework of high performance sparse direct solvers in order to develop robust preconditioners based on a parallel incomplete factorization. The idea is then to define an adaptive blockwise incomplete factorization that is much more accurate (and numerically more robust) than the scalar incomplete factorizations commonly used to precondition iterative solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amestoy, P.R., Duff, I.S., Pralet, S., Vömel, C.: Adapting a parallel sparse direct solver to architectures with clusters of SMPs. Parallel Computing 29(11-12), 1645–1668 (2003)

    Article  MathSciNet  Google Scholar 

  2. Campbell, Y., Davis, T.A.: Incomplete LU factorization: A multifrontal approach, http://www.cise.ufl.edu/~davis/techreports.html

  3. Chang, T.F., Vassilevski, P.S.: A framework for block ILU factorizations using block-size reduction. Math. Comput. 64 (1995)

    Google Scholar 

  4. Chapman, A., Saad, Y., Wigton, L.: High-order ILU preconditioners for CFD problems. Int. J. Numer. Meth. Fluids 33, 767–788 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Charrier, P., Roman, J.: Algorithmique et calculs de complexité pour un solveur de type dissections emboîtées. Numerische Mathematik 55, 463–476 (1989)

    Article  MathSciNet  Google Scholar 

  6. Chow, E., Heroux, M.A.: An object-oriented framework for block preconditioning. Technical Report umsi-95-216, Minnesota Supercomputer Institute, University of Minnesota, Minneapolis, MN (1995)

    Google Scholar 

  7. Gupta, A.: Recent progress in general sparse direct solvers. In: Alexandrov, V.N., Dongarra, J., Juliano, B.A., Renner, R.S., Tan, C.J.K. (eds.) ICCS-ComputSci 2001. LNCS, vol. 2073, pp. 823–840. Springer, Heidelberg (2001)

    Google Scholar 

  8. Hénon, P.: Distribution des Données et Régulation Statique desCalculs et des Communications pour la Résolution de Grands Systèmes Linéaires Creux par Méthode Directe. PhD thesis, LaBRI, Université Bordeaux I, France (November 2001)

    Google Scholar 

  9. Hénon, P., Ramet, P., Roman, J.: PaStiX: A High-Performance Parallel Direct Solver for Sparse Symmetric Definite Systems. Parallel Computing 28(2), 301–321 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hénon, P., Ramet, P., Roman, J.: Efficient algorithms for direct resolution of large sparse system on clusters of SMP nodes. In: SIAM Conference on Applied Linear Algebra, Williamsburg, Virginie, USA (July 2003)

    Google Scholar 

  11. Karypis, G., Kumar, V.: Parallel Threshold-based ILU Factorization. In: Proceedings of the IEEE/ACM SC 1997 Conference (1997)

    Google Scholar 

  12. Li, X.S., Demmel, J.W.: A scalable sparse direct solver using static pivoting. In: Proceedings of the Ninth SIAM Conference on Parallel Processing for Scientific Computing, San Antonio, Texas, March 22-24 (1999)

    Google Scholar 

  13. Lipton, R.J., Rose, D.J., Tarjan, R.E.: Generalized nested dissection. SIAM Journal of Numerical Analysis 16(2), 346–358 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  14. Magolu monga Made, M., Van der Vorst, A.: A generalized domain decomposition paradigm for parallel incomplete LUfactorization preconditionings. Future Generation Computer Systems 17(8), 925–932 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Pellegrini, F., Roman, J., Amestoy, P.: Hybridizing nested dissection and halo approximate minimum degree for efficient sparse matrix ordering. Concurrency: Practice and Experience 12, 69–84 (2000)

    Article  Google Scholar 

  16. Raghavan, P., Teranishi, K., Ng, E.G.: A latency tolerant hybrid sparse solver using incomplete Cholesky factorization. Numer. Linear Algebra (2003)

    Google Scholar 

  17. Saad, Y.: ILUT: a dual threshold incomplete ILUfactorization. Numerical Linear Algebra with Applications 1, 387–402 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  19. Watts III., J.W.: A conjugate gradient truncated direct method for the iterative solution of the reservoir simulation pressure equation. Society of Petroleum Engineers Journal 21, 345–353 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hénon, P., Pellegrini, F., Ramet, P., Roman, J., Saad, Y. (2006). Applying Parallel Direct Solver Techniques to Build Robust High Performance Preconditioners. In: Dongarra, J., Madsen, K., Waśniewski, J. (eds) Applied Parallel Computing. State of the Art in Scientific Computing. PARA 2004. Lecture Notes in Computer Science, vol 3732. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11558958_73

Download citation

  • DOI: https://doi.org/10.1007/11558958_73

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29067-4

  • Online ISBN: 978-3-540-33498-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics