iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/11512073_12
A Massively Multi-agent System for Discovering HIV-Immune Interaction Dynamics | SpringerLink
Skip to main content

A Massively Multi-agent System for Discovering HIV-Immune Interaction Dynamics

  • Conference paper
Massively Multi-Agent Systems I (MMAS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3446))

Included in the following conference series:

Abstract

In MMAS-based biological system simulation, it is a challenging task to deal with numerous interactions among a vast number of autonomous agents. In our work, a hybrid massively multi-agent systems (MMAS) model is developed, and it incorporates the characteristics of cellular automaton (CA) and system-level mathematical equation modeling to simulate HIV-immune interaction dynamics. The mathematical equations are adopted within the site of a two-dimensional lattice. As the average high density, agent interactions can be calculated according to the equations without significantly affecting the performance of the systems studied. In the mean time, the CA model keeps the spatial characteristics of HIV evolution among the sites. The simulation based on the implemented MMAS discovers the dynamics of HIV evolution over different temporal and spatial scales, and reproduces the typical three-stage dynamics of HIV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Liu, J., Jin, X.L., Tsui, K.C.: Autonomy Oriented Computing (AOC): From Problem Solving to Complex Systems Modeling. Springer, Heidelberg (2004)

    Google Scholar 

  2. Newman, M.E.J.: A Model of Mass Extinction. Santa Fe Institute Working Papers (1997), http://ideas.repec.org/p/wop/safiwp/97-02-013.html

  3. Romualdo, P.S., Alessandro, V.: Epidemic Spreading in Scale Free Networks. Physical Review Letters, 3200–3203 (2001)

    Google Scholar 

  4. Holland, J.H.: Genetic Algorithm and the Optimal Allocations of Trials. SIAM Journal of Computing 2, 88–105 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dorigo, M., Caro, G.D.: The Ant Colony Optimization Meta-Heuristic. New Ideas in Optimization, pp. 11–32. McGraw-Hill, New York (1999)

    Google Scholar 

  6. Dorigo, M., Caro, G.D., Gambardella, L.M.: Ant Algorithms for Discrete Optimization. Artificial Life 5(2), 137–172 (1999)

    Article  Google Scholar 

  7. Bernardes, A.T., Santos, R.M.: Immunization and Aging: A Learning Process in the Immune Network. Physical Review Letters 81, 3034–3037 (1998)

    Article  Google Scholar 

  8. Santos, R.M.: Immune Responses: Getting Close to Experimental Results with Cellular Automata Models. Annual Reviews of Computational Physics VI, 159–202 (1999)

    Google Scholar 

  9. Santos, R., Coutinho, S.: On the Dynamics of the Evolution of HIV Infection (2000), http://arxiv.org/abs/cond-mat/0008081

  10. Hershberg, U., Louzoun, Y., Atlan, H., Solomon, S.: HIV Time Hierarchy: Winning the War while. Loosing all the Battles. Physica A 289, 178–190 (2000)

    MathSciNet  Google Scholar 

  11. Morel, P.A.: Mathematical Modeling of Immunological Reactions. Frontiers in Bioscience 3, 338–347 (1998)

    Google Scholar 

  12. Louzoun, Y., Solomon, S., Atlan, H., Cohen, I.R.: The Emergence of Spatial Complexity in the Immune System (2000), http://xxx.lanl.gov/abs/nlin.AO/0008133

  13. Louzoun, Y., Solomon, S., Atlan, H., Cohen, I.R.: Microscopic Discrete Proliferating Components Cause the Self-organized Emergence of Macroscopic Adaptive Features in Biological Systems (2000), http://xxx.lanl.gov/abs/nlin.AO/0006043

  14. Nowak, M.A., Bangham, C.R.M.: Population Dynamics of Immune Responses to Persistent Viruses. Science 272, 74–79 (1996)

    Article  Google Scholar 

  15. Kirschner, D.E., Webb, G.F.: A Mathematical Model of Combined Drug Therapy of HIV Infection. Journal of Theoretical Medicine 1, 25–34 (1997)

    Article  MATH  Google Scholar 

  16. Kirschner, D.E., Mehr, R., Perelson, A.S.: Role of the Thymus in Pediatric HIV-1 Infection. Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology 18, 95–109 (1998)

    Google Scholar 

  17. Kirschner, D.E.: Using Mathematics to Understand HIV Immune Dynamics. IN: Notices of the American Mathematical Society, pp. 191–202 (1996)

    Google Scholar 

  18. Liu, J., Zhang, S.W., Yang, J.: Characterizing Web usage regularities with information foraging agents. IEEE Transactions on Knowledge and Data Engineering 16(5), 566–584 (2004)

    Article  Google Scholar 

  19. Coffin, J.M.: HIV Population Dynamics in Vivo: Implications for Genetic Variation, Pathogenesis, and Therapy. Science 267, 483–489 (1995)

    Article  Google Scholar 

  20. Perelson, A.S., Newmann, A.U., Markowitz, M., Leonard, J.M., Ho, D.D.: HIV-1 Dynamics in Vivo: Virion Clearance Rate, Infected Cell Life-span, and Viral Generation Time. Science 271, 1582–1586 (1996)

    Article  Google Scholar 

  21. Fauci, A.S.: The Immunodeficiency Virus: Infectivity and Mechanisms of Pathogenesis. Science 239, 617–622 (1988)

    Article  Google Scholar 

  22. McCune, J.M.: The Dynamics of CD4+ T-cell Depletion in HIV Disease. Nature 410, 974–979 (2001)

    Article  Google Scholar 

  23. Wei, X., et al.: Viral Dynamics in Human Immunodeficiency Virus Type 1 Infection. Nature 373, 117–122 (1995)

    Article  Google Scholar 

  24. Pennisi, E., Cohen, J.: Eradicating HIV from a Patient: Not Just a Dream? Science 272, 1884 (1996)

    Article  Google Scholar 

  25. Adamic, L.A., Huberman, B.A.: Technical Comment to “Emergence of Scaling in Random Networks”. Science 286(15), 509–512 (1999)

    MathSciNet  Google Scholar 

  26. Nowak, M.A., Anderson, R.M., Boerlijst, M.C., Bonhoeffer, S., May, R.M., McMichal, A.J.: HIV-1 Evolution and Disease Progression. Science 274, 1008–1010 (1996)

    Article  Google Scholar 

  27. Rodrigo, A.G.: HIV Evolutionary Genetics. Proceedings of the National Academy of Sciences 6, 10559–10561 (1999)

    Article  Google Scholar 

  28. Bonhoeffer, S., Holmes, E.C., Nowak, M.A.: Causes of HIV Diversity. Nature 376, 125 (1995)

    Article  Google Scholar 

  29. Wolinsky, S.M., et al.: Adaptive Evolution of Human Immunodeficiency Virus-Type 1 During the Natural Course of Infection. Science 272, 537–542 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, S., Liu, J. (2005). A Massively Multi-agent System for Discovering HIV-Immune Interaction Dynamics. In: Ishida, T., Gasser, L., Nakashima, H. (eds) Massively Multi-Agent Systems I. MMAS 2004. Lecture Notes in Computer Science(), vol 3446. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11512073_12

Download citation

  • DOI: https://doi.org/10.1007/11512073_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26974-8

  • Online ISBN: 978-3-540-31889-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics