iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/11503415_26
Variations on U-Shaped Learning | SpringerLink
Skip to main content

Variations on U-Shaped Learning

  • Conference paper
Learning Theory (COLT 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3559))

Included in the following conference series:

Abstract

The paper deals with the following problem: is returning to wrong conjectures necessary to achieve full power of learning? Returning to wrong conjectures complements the paradigm of U-shaped learning [2,6,8,20,24] when a learner returns to old correct conjectures. We explore our problem for classical models of learning in the limit: TxtEx-learning – when a learner stabilizes on a correct conjecture, and TxtBc-learning – when a learner stabilizes on a sequence of grammars representing the target concept. In all cases, we show that, surprisingly, returning to wrong conjectures is sometimes necessary to achieve full power of learning. On the other hand it is not necessary to return to old “overgeneralizing” conjectures containing elements not belonging to the target language. We also consider our problem in the context of so-called vacillatory learning when a learner stabilizes to a finite number of correct grammars. In this case we show that both returning to old wrong conjectures and returning to old “overgeneralizing” conjectures is necessary for full learning power. We also show that, surprisingly, learners consistent with the input seen so far can be made decisive [2,21] – they do not have to return to any old conjectures – wrong or right.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Angluin, D.: Inductive inference of formal languages from positive data. Information and Control 45, 117–135 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baliga, G., Case, J., Merkle, W., Stephan, F., Wiehagen, R.: When unlearning helps (Manuscript 2005); Preliminary version of the paper appeared in ICALP (2000), http://www.cis.udel.edu/~case/papers/decisive.ps

  3. Bārzdiņš, J.: Inductive inference of automata, functions and programs. In: Int. Math. Congress, Vancouver, pp. 771–776 (1974)

    Google Scholar 

  4. Blum, L., Blum, M.: Toward a mathematical theory of inductive inference. Information and Control 28, 125–155 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  5. Blum, M.: A machine-independent theory of the complexity of recursive functions. Journal of the ACM 14, 322–336 (1967)

    Article  MATH  Google Scholar 

  6. Bowerman, M.: Starting to talk worse: Clues to language acquisition from children’s late speech errors. In: Strauss, S., Stavy, R. (eds.) U-Shaped Behavioral Growth. Developmental Psychology Series, Academic Press, New York (1982)

    Google Scholar 

  7. Carey, S.: An analysis of a learning paradigm. In: Strauss, S., Stavy, R. (eds.) U-Shaped Behavioral Growth. Developmental Psychology Series, Academic Press, New York (1982)

    Google Scholar 

  8. Carlucci, L., Case, J., Jain, S., Stephan, F.: U-shaped learning may be necessary. Technical Report TRA11/04, School of Computing, National University of Singapore (November 2004)

    Google Scholar 

  9. Case, J.: The power of vacillation in language learning. SIAM Journal on Computing 28(6), 1941–1969 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Case, J., Lynes, C.: Machine inductive inference and language identification. In: Nielsen, M., Schmidt, E.M. (eds.) ICALP 1982. LNCS, vol. 140, pp. 107–115. Springer, Heidelberg (1982)

    Chapter  Google Scholar 

  11. Case, J., Smith, C.: Comparison of identification criteria for machine inductive inference. Theoretical Computer Science 25, 193–220 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fulk, M.: Prudence and other conditions on formal language learning. Information and Computation 85, 1–11 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fulk, M., Jain, S., Osherson, D.: Open problems in systems that learn. Journal of Computer and System Sciences 49(3), 589–604 (1994)

    Article  MathSciNet  Google Scholar 

  14. Gold, E.M.: Language identification in the limit. Information and Control 10, 447–474 (1967)

    Article  MATH  Google Scholar 

  15. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979)

    MATH  Google Scholar 

  16. Jantke, K., Beick, H.: Combining postulates of naturalness in inductive inference. Journal of Information Processing and Cybernetics (EIK) 17, 465–484 (1981)

    MATH  MathSciNet  Google Scholar 

  17. Kurtz, S., Royer, J.: Prudence in language learning. In: Haussler, D., Pitt, L. (eds.) Proceedings of the Workshop on Computational Learning Theory, pp. 143–156. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  18. Lange, S., Wiehagen, R.: Polynomial time inference of arbitrary pattern languages. New Generation Computing 8, 361–370 (1991)

    Article  MATH  Google Scholar 

  19. Machtey, M., Young, P.: An Introduction to the General Theory of Algorithms. North-Holland, New York (1978)

    MATH  Google Scholar 

  20. Marcus, G., Pinker, S., Ullman, M., Hollander, M., Rosen, T., Xu, F.: Overregularization in Language Acquisition. In: Monographs of the Society for Research in Child Development, vol. 57(4), University of Chicago Press, Chicago (1992); Includes commentary by Harold Clahsen

    Google Scholar 

  21. Osherson, D., Stob, M., Weinstein, S.: Systems that Learn: An Introduction to Learning Theory for Cognitive and Computer Scientists. MIT Press, Cambridge (1986)

    Google Scholar 

  22. Plunkett, K., Marchman, V.: U-shaped learning and frequency effects in a multi-layered perceptron: implications for child language acquisition. Cognition 38(1), 43–102 (1991)

    Article  Google Scholar 

  23. Rogers, H.: Theory of Recursive Functions and Effective Computability. MIT Press, Cambridge (1987); Reprinted by MIT Press in 1987

    Google Scholar 

  24. Strauss, S., Stavy, R.: U-Shaped Behavioral Growth. In: Developmental Psychology Series, Academic Press, New York (1982)

    Google Scholar 

  25. Strauss, S., Stavy, R., Orpaz, N.: The child’s development of the concept of temperature. Manuscript, Tel-Aviv University (1977)

    Google Scholar 

  26. Taatgen, N.A., Anderson, J.R.: Why do children learn to say broke? a model of learning the past tense without feedback. Cognition 86(2), 123–155 (2002)

    Article  Google Scholar 

  27. Wiehagen, R., Liepe, W.: Charakteristische Eigenschaften von erkennbaren Klassen rekursiver Funktionen. Journal of Information Processing and Cybernetics (EIK) 12, 421–438 (1976)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Carlucci, L., Jain, S., Kinber, E., Stephan, F. (2005). Variations on U-Shaped Learning. In: Auer, P., Meir, R. (eds) Learning Theory. COLT 2005. Lecture Notes in Computer Science(), vol 3559. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11503415_26

Download citation

  • DOI: https://doi.org/10.1007/11503415_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26556-6

  • Online ISBN: 978-3-540-31892-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics