iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/11499305_43
Neural Clustering Analysis of Macroevolutionary and Genetic Algorithms in the Evolution of Robot Controllers | SpringerLink
Skip to main content

Neural Clustering Analysis of Macroevolutionary and Genetic Algorithms in the Evolution of Robot Controllers

  • Conference paper
Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach (IWINAC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3562))

Abstract

In this work, we will use self-organizing feature maps as a method of visualization the sampling of the fitness space considered by the populations of two evolutionary methods, genetic and macroevolutionary algorithms, in a case with a mostly flat fitness landscape and low populations. Macroevolutionary algorithms will allow obtaining better results due to the way in which they handle the exploration-exploitation equilibrium. We test it with different alternatives using the self-organizing maps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Becerra, J.A., Santos, J., Duro, R.J.: MA vs. GA in Low Population Evolutionary Processes with Mostly Flat Fitness Lanscapes. In: Proceedings of 6th Joint Conference on Information Sciences - Frontiers in Evolutionary Algorithms (FEA 2002), pp. 626–630 (2002)

    Google Scholar 

  2. Becerra, J.A., Santos, J., Duro, R.J.: Robot Controller Evolution with Macroevolutionary Algorithms. In: Graña, M., Duro, R.J., d’ Anjou, A., Wang, P. (eds.) Information Processing with Evolutionary Algorithms, pp. 117–127 (2004)

    Google Scholar 

  3. De Jong, K.A.: An Analysis of the Behavior of a Class of a Genetic Adaptive Systems, Ph. Thesis, University of Michigan, Ann Arbor. (1975)

    Google Scholar 

  4. Kohonen, T.: Self-Organization and Associative Memory. Series in Information Sciences, vol. 8. Springer, Heidelberg (1984); 2nd ed. (1988)

    MATH  Google Scholar 

  5. Marín, J., Solé, R.V.: Macroevolutionary Algorithms: A New Optimization Method on Fitness Landscapes. IEEE Transactions on Evolutionary Computation 3(4), 272–286 (1999)

    Article  Google Scholar 

  6. Menczer, F., Street, W.N., Degeratu, M.: Evolving Heterogeneous Neural Agents by Local Selection. In: Patel, M.J., Honavar, V., Balakrishnan, K. (eds.) Advances in the Evolutionary Synthesis of Intelligent Agents, pp. 337–365. MIT Press, Cambridge (2001)

    Google Scholar 

  7. NeuroSolutions version 4.2, NeuroDimension, Inc

    Google Scholar 

  8. Nolfi, S., Floreano, D.: Evolutionary Robotics. MIT Press, Cambridge (2000)

    Google Scholar 

  9. Romero, G., Arenas, M.G., Castillo, P.A., Merelo, J.J.: Visualization of Neural Net Evolution. In: Mira, J., Álvarez, J.R. (eds.) IWANN 2003. LNCS, vol. 2686, pp. 534–541. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Santos, J., Duro, R.J., Becerra, J.A., Crespo, J.L., Bellas, F.: Considerations in the Application of Evolution to the Generation of Robot Controllers. Information Sciences 133, 127–148 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Becerra, J.A., Santos, J. (2005). Neural Clustering Analysis of Macroevolutionary and Genetic Algorithms in the Evolution of Robot Controllers. In: Mira, J., Álvarez, J.R. (eds) Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach. IWINAC 2005. Lecture Notes in Computer Science, vol 3562. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499305_43

Download citation

  • DOI: https://doi.org/10.1007/11499305_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26319-7

  • Online ISBN: 978-3-540-31673-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics