Abstract
In this work, we will use self-organizing feature maps as a method of visualization the sampling of the fitness space considered by the populations of two evolutionary methods, genetic and macroevolutionary algorithms, in a case with a mostly flat fitness landscape and low populations. Macroevolutionary algorithms will allow obtaining better results due to the way in which they handle the exploration-exploitation equilibrium. We test it with different alternatives using the self-organizing maps.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Becerra, J.A., Santos, J., Duro, R.J.: MA vs. GA in Low Population Evolutionary Processes with Mostly Flat Fitness Lanscapes. In: Proceedings of 6th Joint Conference on Information Sciences - Frontiers in Evolutionary Algorithms (FEA 2002), pp. 626–630 (2002)
Becerra, J.A., Santos, J., Duro, R.J.: Robot Controller Evolution with Macroevolutionary Algorithms. In: Graña, M., Duro, R.J., d’ Anjou, A., Wang, P. (eds.) Information Processing with Evolutionary Algorithms, pp. 117–127 (2004)
De Jong, K.A.: An Analysis of the Behavior of a Class of a Genetic Adaptive Systems, Ph. Thesis, University of Michigan, Ann Arbor. (1975)
Kohonen, T.: Self-Organization and Associative Memory. Series in Information Sciences, vol. 8. Springer, Heidelberg (1984); 2nd ed. (1988)
Marín, J., Solé, R.V.: Macroevolutionary Algorithms: A New Optimization Method on Fitness Landscapes. IEEE Transactions on Evolutionary Computation 3(4), 272–286 (1999)
Menczer, F., Street, W.N., Degeratu, M.: Evolving Heterogeneous Neural Agents by Local Selection. In: Patel, M.J., Honavar, V., Balakrishnan, K. (eds.) Advances in the Evolutionary Synthesis of Intelligent Agents, pp. 337–365. MIT Press, Cambridge (2001)
NeuroSolutions version 4.2, NeuroDimension, Inc
Nolfi, S., Floreano, D.: Evolutionary Robotics. MIT Press, Cambridge (2000)
Romero, G., Arenas, M.G., Castillo, P.A., Merelo, J.J.: Visualization of Neural Net Evolution. In: Mira, J., Álvarez, J.R. (eds.) IWANN 2003. LNCS, vol. 2686, pp. 534–541. Springer, Heidelberg (2003)
Santos, J., Duro, R.J., Becerra, J.A., Crespo, J.L., Bellas, F.: Considerations in the Application of Evolution to the Generation of Robot Controllers. Information Sciences 133, 127–148 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Becerra, J.A., Santos, J. (2005). Neural Clustering Analysis of Macroevolutionary and Genetic Algorithms in the Evolution of Robot Controllers. In: Mira, J., Álvarez, J.R. (eds) Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach. IWINAC 2005. Lecture Notes in Computer Science, vol 3562. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499305_43
Download citation
DOI: https://doi.org/10.1007/11499305_43
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26319-7
Online ISBN: 978-3-540-31673-2
eBook Packages: Computer ScienceComputer Science (R0)