Abstract
A general similarity-based algorithm for extracting ontologies from data has been provided in [1]. The algorithm works over arbitrary approximation spaces, modeling notions of similarity and mereological part-of relations (see, e.g., [2, 3, 4, 5]). In the current paper we propose a novel technique of machine learning similarity on tuples on the basis of similarities on attribute domains. The technique reflects intuitions behind tolerance spaces of [6]and similarity spaces of [7]. We illustrate the use of the technique in extracting ontologies from data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Doherty, P., Grabowski, M., ukaszewicz, W., Sza as, A.: Towards a framework for approximate ontologies. Fundamenta Informaticae 57, 147–165 (2003)
Catteano, G.: Abstract approximation spaces for rough theories. Rough Sets in Knowledge Discovery 1: Meth. and Appl., 59–98 (1998)
Duentsch, I., Gediga, G.: Uncertainty measures of rough set prediction. Artificial Intelligence 106, 77–107 (1998)
Skowron, A., Stepaniuk, J.: Generalized approximation spaces. In: Lin, T., Wildberger, A. (eds.) Soft Computing: Rough Sets, Fuzzy Logic, Neural Networks, Uncertainty Management, Knowledge Discovery, pp. 18–21 (1995)
Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27, 245–253 (1996)
Doherty, P., Łukaszewicz, W., Szałas, A.: Tolerance spaces and approximative representational structures. In: Günter, A., Kruse, R., Neumann, B. (eds.) KI 2003. LNCS (LNAI), vol. 2821, pp. 475–489. Springer, Heidelberg (2003)
Doherty, P., Szałas, A.: On the correspondence between approximations and similarity. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 143–152. Springer, Heidelberg (2004)
Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological Engineering with Examples from the Areas of Knowlegge Management. In: e-Commerce and the Semantic Web. Springer, Heidelberg (2004)
Cimiano, P., Hotho, A., Staab, S.: Comparing conceptual, divisive and agglomerative clustering for learning taxonomies from text. In: Mantaras, R., Saitta, L. (eds.) Proc. ECAI 2004, pp. 435–439 (2004)
Lamparter, S., Ehrig, M., Tempich, C.: Knowledge extraction from classification schemas. In: Meersman, R., Tari, Z. (eds.) OTM 2004. LNCS, vol. 3290, pp. 618–636. Springer, Heidelberg (2004)
Maedche, A., Staab, S.: Measuring similarity between ontologies. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 251–263. Springer, Heidelberg (2002)
Maedche, A., Staab, S.: Comparing ontologies - similarity measures and a comparison study. Institute AIFB, University of Karlsruhe, Internal Report (2001)
Wang, X., De Baets, B., Kerre, E.: A comparative study of similarity measures. Fuzzy Sets and Systems 73, 259–268 (1995)
Wettschereck, D., Aha, D.W., Mohri, T.: A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms. Artificial Intelligence Review 11, 273–314 (1997)
Kononenko, I.: Estimating attributes: Analysis and extensions of RELIEF. In: European Conference on Machine Learning, pp. 171–182 (1994)
Stahl, A.: Approximation of utility functions by learning similarity measures. In: Lenski, W. (ed.) Logic versus Approximation. LNCS, vol. 3075, pp. 150–172. Springer, Heidelberg (2004)
Nguyen, S.H.: Regularity Analysis and its Applications in Data Mining. Ph.D. Thesis, University of Warsaw (1999)
Doherty, P., Łukaszewicz, W., Szałas, A.: Approximative query techniques for agents with heterogeneous ontologies and perceptive capabilities. In: Dubois, D., Welty, C., Williams, M.A. (eds.) Proc. of 9th Int. Conf. KR 2004, pp. 459–468 (2004)
Doherty, P., Łukaszewicz, W., Szałas, A.: Approximate databases and query techniques for agents with heterogenous perceptual capabilities. In: Proc. of the 7th Int. Conf. on Information Fusion, FUSION 2004, pp. 175–182 (2004)
Cendrowska, J.: PRISM: An algorithm for inducing modular rules. Int. J. Man-Mach. Stud. 27, 349–370 (1987)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Grabowski, M., Szałas, A. (2005). A Technique for Learning Similarities on Complex Structures with Applications to Extracting Ontologies. In: Szczepaniak, P.S., Kacprzyk, J., Niewiadomski, A. (eds) Advances in Web Intelligence. AWIC 2005. Lecture Notes in Computer Science(), vol 3528. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11495772_29
Download citation
DOI: https://doi.org/10.1007/11495772_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26219-0
Online ISBN: 978-3-540-31900-9
eBook Packages: Computer ScienceComputer Science (R0)