iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/11495772_29
A Technique for Learning Similarities on Complex Structures with Applications to Extracting Ontologies | SpringerLink
Skip to main content

A Technique for Learning Similarities on Complex Structures with Applications to Extracting Ontologies

  • Conference paper
Advances in Web Intelligence (AWIC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3528))

Included in the following conference series:

Abstract

A general similarity-based algorithm for extracting ontologies from data has been provided in [1]. The algorithm works over arbitrary approximation spaces, modeling notions of similarity and mereological part-of relations (see, e.g., [2, 3, 4, 5]). In the current paper we propose a novel technique of machine learning similarity on tuples on the basis of similarities on attribute domains. The technique reflects intuitions behind tolerance spaces of [6]and similarity spaces of [7]. We illustrate the use of the technique in extracting ontologies from data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Doherty, P., Grabowski, M., ukaszewicz, W., Sza as, A.: Towards a framework for approximate ontologies. Fundamenta Informaticae 57, 147–165 (2003)

    MATH  MathSciNet  Google Scholar 

  2. Catteano, G.: Abstract approximation spaces for rough theories. Rough Sets in Knowledge Discovery 1: Meth. and Appl., 59–98 (1998)

    Google Scholar 

  3. Duentsch, I., Gediga, G.: Uncertainty measures of rough set prediction. Artificial Intelligence 106, 77–107 (1998)

    Article  MathSciNet  Google Scholar 

  4. Skowron, A., Stepaniuk, J.: Generalized approximation spaces. In: Lin, T., Wildberger, A. (eds.) Soft Computing: Rough Sets, Fuzzy Logic, Neural Networks, Uncertainty Management, Knowledge Discovery, pp. 18–21 (1995)

    Google Scholar 

  5. Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27, 245–253 (1996)

    MATH  MathSciNet  Google Scholar 

  6. Doherty, P., Łukaszewicz, W., Szałas, A.: Tolerance spaces and approximative representational structures. In: Günter, A., Kruse, R., Neumann, B. (eds.) KI 2003. LNCS (LNAI), vol. 2821, pp. 475–489. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Doherty, P., Szałas, A.: On the correspondence between approximations and similarity. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 143–152. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological Engineering with Examples from the Areas of Knowlegge Management. In: e-Commerce and the Semantic Web. Springer, Heidelberg (2004)

    Google Scholar 

  9. Cimiano, P., Hotho, A., Staab, S.: Comparing conceptual, divisive and agglomerative clustering for learning taxonomies from text. In: Mantaras, R., Saitta, L. (eds.) Proc. ECAI 2004, pp. 435–439 (2004)

    Google Scholar 

  10. Lamparter, S., Ehrig, M., Tempich, C.: Knowledge extraction from classification schemas. In: Meersman, R., Tari, Z. (eds.) OTM 2004. LNCS, vol. 3290, pp. 618–636. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Maedche, A., Staab, S.: Measuring similarity between ontologies. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 251–263. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Maedche, A., Staab, S.: Comparing ontologies - similarity measures and a comparison study. Institute AIFB, University of Karlsruhe, Internal Report (2001)

    Google Scholar 

  13. Wang, X., De Baets, B., Kerre, E.: A comparative study of similarity measures. Fuzzy Sets and Systems 73, 259–268 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Wettschereck, D., Aha, D.W., Mohri, T.: A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms. Artificial Intelligence Review 11, 273–314 (1997)

    Article  Google Scholar 

  15. Kononenko, I.: Estimating attributes: Analysis and extensions of RELIEF. In: European Conference on Machine Learning, pp. 171–182 (1994)

    Google Scholar 

  16. Stahl, A.: Approximation of utility functions by learning similarity measures. In: Lenski, W. (ed.) Logic versus Approximation. LNCS, vol. 3075, pp. 150–172. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Nguyen, S.H.: Regularity Analysis and its Applications in Data Mining. Ph.D. Thesis, University of Warsaw (1999)

    Google Scholar 

  18. Doherty, P., Łukaszewicz, W., Szałas, A.: Approximative query techniques for agents with heterogeneous ontologies and perceptive capabilities. In: Dubois, D., Welty, C., Williams, M.A. (eds.) Proc. of 9th Int. Conf. KR 2004, pp. 459–468 (2004)

    Google Scholar 

  19. Doherty, P., Łukaszewicz, W., Szałas, A.: Approximate databases and query techniques for agents with heterogenous perceptual capabilities. In: Proc. of the 7th Int. Conf. on Information Fusion, FUSION 2004, pp. 175–182 (2004)

    Google Scholar 

  20. Cendrowska, J.: PRISM: An algorithm for inducing modular rules. Int. J. Man-Mach. Stud. 27, 349–370 (1987)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grabowski, M., Szałas, A. (2005). A Technique for Learning Similarities on Complex Structures with Applications to Extracting Ontologies. In: Szczepaniak, P.S., Kacprzyk, J., Niewiadomski, A. (eds) Advances in Web Intelligence. AWIC 2005. Lecture Notes in Computer Science(), vol 3528. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11495772_29

Download citation

  • DOI: https://doi.org/10.1007/11495772_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26219-0

  • Online ISBN: 978-3-540-31900-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics