Abstract
This work identifies the limitations of n-way data analysis techniques in multidimensional stream data, such as Internet chatroom communications data, and establishes a link between data collection and performance of these techniques. Its contributions are twofold. First, it extends data analysis to multiple dimensions by constructing n-way data arrays known as high order tensors. Chatroom tensors are generated by a simulator which collects and models actual communication data. The accuracy of the model is determined by the Kolmogorov-Smirnov goodness-of-fit test which compares the simulation data with the observed (real) data. Second, a detailed computational comparison is performed to test several data analysis techniques including svd [1], and multiway techniques including Tucker1, Tucker3 [2], and Parafac [3].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Golub, G., Loan, C.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)
Tucker, L.: Some mathematical notes on three mode factor analysis. Psychometrika 31, 279–311 (1966)
Harshman, R.: Foundations of the parafac procedure: Model and conditions for an explanatory multi-mode factor analysis. UCLA WPP 16, 1–84 (1970)
Kalt, C.: Internet Relay Chat. RFC 2810, 2811, 2812, 2813 (2000)
Krebs, V.: An introduction to social network analysis (2004), http://www.orgnet.com/sna.html (accessed February 2004)
Magdon-Ismail, M., Goldberg, M., Siebecker, D., Wallace, W.: Locating hidden groups in communication networks using hidden markov models. In: Chen, H., Miranda, R., Zeng, D.D., Demchak, C.C., Schroeder, J., Madhusudan, T. (eds.) ISI 2003. LNCS, vol. 2665, pp. 126–137. Springer, Heidelberg (2003)
Goldberg, M., Horn, P., Magdon-Ismail, M., Riposo, J., Siebecker, D., Wallace, W., Yener, B.: Statistical modeling of social groups on communication networks. In: First conference of the North American Association for Computational Social and Organizational Science, NAACSOS 2003 (2003)
Camtepe, S., Krishnamoorthy, M., Yener, B.: A tool for internet chatroom surveillance. In: Chen, H., Moore, R., Zeng, D.D., Leavitt, J. (eds.) ISI 2004. LNCS, vol. 3073, pp. 252–265. Springer, Heidelberg (2004)
Camtepe, S., Goldberg, M., Magdon-Ismail, M., Krishnamoorty, M.: Detecting conversing groups of chatters: A model, algorithms, and tests. In: IADIS International Conference on Applied Computing (2005)
Mutton, P., Golbeck, J.: Visualization of semantic metadata and ontologies. In: Seventh International Conference on Information Visualization (IV 2003), pp. 300–305. IEEE, Los Alamitos (2003)
Mutton, P.: Piespy social network bot (2001), http://www.jibble.org/piespy (accessed January 2005)
Viegas, F., Donath, J.: Chat circles. In: ACM SIGCHI, pp. 9–16. ACM, New York (1999)
Kroonenberg, P.: Three-mode Principal Component Analysis: Theory and Applications. DSWO Press, Leiden (1983)
Leibovici, D., Sabatier, R.: A singular value decomposition of a k-ways array for a principal component analysis of multi-way data, the pta-k. Linear Algebra and its Applications 269, 307–329 (1998)
Lathauwer, L., Moor, B., Van de walle, J.: On the best rank-1 and rank-(r1,r2,.,rn) approximation of higher-order tensors. SIAM J. Matrix Analysis and Applications 21, 1324–1342 (2000)
Zhang, T., Golub, G.: Rank-one approximation to higher order tensors. SIAM J. Matrix Analysis and Applications 23, 534–550 (2001)
Kolda, T.: Orthogonal tensor decompositions. SIAM J. Matrix Analysis and Applications 23, 243–255 (2001)
Kofidis, E., Regalia, P.: On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM J. Matrix Analysis and Applications 22, 863–884 (2002)
Kolda, T.: A counter example to the possibility of an extension of the eckart-young low-rank approximation theorem for the orthogonal rank tensor decomposition. SIAM J. Matrix Analysis and Applications 24, 762–767 (2003)
Kolda, T., Bader, B.: Matlab tensor classes for fast algorithm prototyping. Technical Report SAND2004-5187, Sandia National Laboratories (2004)
Andersson, C., Bro, R.: The N-way Toolbox for MATLAB. Chemometrics and Intelligent Laboratory Systems (2000)
Andrews, D.: Plots of high-dimensional data. Biometrics 28, 125–136 (1972)
Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algoritms. Plenum Press, New York (1981)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Acar, E., Çamtepe, S.A., Krishnamoorthy, M.S., Yener, B. (2005). Modeling and Multiway Analysis of Chatroom Tensors. In: Kantor, P., et al. Intelligence and Security Informatics. ISI 2005. Lecture Notes in Computer Science, vol 3495. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11427995_21
Download citation
DOI: https://doi.org/10.1007/11427995_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25999-2
Online ISBN: 978-3-540-32063-0
eBook Packages: Computer ScienceComputer Science (R0)