iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/11424918_21
Towards an Ontology-Based Spatial Clustering Framework | SpringerLink
Skip to main content

Towards an Ontology-Based Spatial Clustering Framework

  • Conference paper
Advances in Artificial Intelligence (Canadian AI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3501))

Abstract

Spatial clustering is an important topic in knowledge discovery research. However, most clustering methods do not consider semantic information during the clustering process. In this paper, we present ONTO_CLUST, a framework for ontology-based spatial clustering. Using the framework, spatial clustering can be conducted with the support of a spatial clustering ontology. As an illustration, the framework is applied to the problem of clustering Canadian population data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications. SIGMOD Record 27(2), 94–105 (1998)

    Article  Google Scholar 

  2. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284(5), 34–43 (2001)

    Article  Google Scholar 

  3. Ester, M., Kriegel, H., Sander, J., Xu, X.: A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In: Proc. of 2nd KDD, Portland, pp. 226–231 (1996)

    Google Scholar 

  4. Estivill-Castro, V., Lee, I.J.: AUTOCLUST+: Automatic Clustering of Point-Data Sets in the Presence of Obstacles. In: Proc. of Intl. Workshop on Temporal, Spatial and Spatio-Temporal Data Mining, Lyon, France, pp. 133–146 (2000)

    Google Scholar 

  5. Gruber, T.R.: A translation approach to portable ontologies. Knowledge Acquisition 5(2), 199–220 (1993)

    Article  Google Scholar 

  6. http://protege.stanford.edu/index.html

  7. http://protege.stanford.edu/plugins/owl/index.html

  8. http://www.dmtispatial.com/geocoding_software.html

  9. http://www.ida.liu.se/~her/JessTab/

  10. http://www.w3.org/2001/sw/WebOnt/

  11. Hwang, J.: Ontology-Based Spatial Clustering Method: Case Study of Traffic Accidents. Student Paper Sessions, UCGIS Summer Assembly (2003)

    Google Scholar 

  12. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, Chichester (1990)

    Google Scholar 

  13. Ng, R., Han, J.: Efficient and Effective Clustering Method for Spatial Data Mining. In: Proc. of Int’l Conf. on Very Large Data Bases, Santiago, Chile, pp. 144–155 (1994)

    Google Scholar 

  14. Shekhar, S., Chawla, S.: Spatial Databases: A Tour. Prentice Hall, Englewood Cliffs (2003)

    Google Scholar 

  15. Sund, R.: Utilisation of administrative registers using scientific knowledge discovery. Intelligent Data Analysis 7(6), 501–519 (2003)

    Google Scholar 

  16. Tung, A.K.H., Han, J., Lakshmanan, L.V.S., Ng, R.T.: Constraint-Based Clustering in Large Databases. In: Proc. 2001 Intl. Conf. on Database Theory, London, U.K, pp. 405–419 (2001)

    Google Scholar 

  17. Tung, A.K.H., Hou, J., Han, J.: Spatial Clustering in the Presence of Obstacles. In: Proc. 2001 Intl. Conf. On Data Engineering, Heidelberg, Germany, pp. 359–367 (2001)

    Google Scholar 

  18. Wang, X., Hamilton, H.J.: Clustering Spatial Data in the Presence of Obstacles. In: Proc. 2004 FLAIRS, Miami Beach, Florida, pp. 312–317 (2004)

    Google Scholar 

  19. Wang, X., Hamilton, H.J.: DBRS: A Density-Based Spatial Clustering Method with Random Sampling. In: PAKDD 2003, pp. 563–575 (2003)

    Google Scholar 

  20. Wang, X., Rostoker, C., Hamilton, H.J.: Density-Based Spatial Clustering in the Presence of Obstacles and Facilitators. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 446–458. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  21. Wang, W., Yang, J., Muntz, R.: STING: A Statistical Information Grid Approach to Spatial Data Mining. In: Proc. of 23rd VLDB, Athens, Greece, pp. 186–195 (1997)

    Google Scholar 

  22. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  23. Zaïane, O.R., Lee, C.H.: Clustering Spatial Data When Facing Physical Constraints. In: Proc. of the IEEE International Conf. on Data Mining, Maebashi City, Japan, pp. 737–740 (2002)

    Google Scholar 

  24. Zhang, T., Ramakrishna, R., Livny, M.: BIRCH: An Efficient Data Clustering Method For Very Large Databases. SIGMOD Record 25(2), 103–114 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, X., Hamilton, H.J. (2005). Towards an Ontology-Based Spatial Clustering Framework. In: Kégl, B., Lapalme, G. (eds) Advances in Artificial Intelligence. Canadian AI 2005. Lecture Notes in Computer Science(), vol 3501. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11424918_21

Download citation

  • DOI: https://doi.org/10.1007/11424918_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25864-3

  • Online ISBN: 978-3-540-31952-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics