iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/10721975_5
A de Bruijn Notation for Higher-Order Rewriting | SpringerLink
Skip to main content

A de Bruijn Notation for Higher-Order Rewriting

(Extended Abstract)

  • Conference paper
Rewriting Techniques and Applications (RTA 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1833))

Included in the following conference series:

Abstract

We propose a formalism for higher-order rewriting in de Bruijn notation. This notation not only is used for terms (as usually done in the literature) but also for metaterms, which are the syntactical objects used to express general higher-order rewrite systems. We give formal translations from higher-order rewriting with names to higher-order rewriting with de Bruijn indices, and vice-versa. These translations can be viewed as an interface in programming languages based on higher-order rewrite systems, and they are also used to show some properties, namely, that both formalisms are operationally equivalent, and that confluence is preserved when translating one formalism into the other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barendregt, H.P.: The Lambda Calculus: Its Syntax and Semantics, Revised edn. Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam (1984)

    Google Scholar 

  2. Bloo, R.: Preservation of Termination for Explicit Substitution. PhD thesis, Eindhoven University (1997)

    Google Scholar 

  3. Bloo, R., Rose, K.: Combinatory reduction systems with explicit substitution that preserve strong normalisation. In: Ganzinger, H. (ed.) RTA 1996. LNCS, vol. 1103, pp. 169–183. Springer, Heidelberg (1996)

    Google Scholar 

  4. Bonelli, E., Kesner, D., Ríos, A.: A de Bruijn notation for higher-order rewriting (2000), Available as ftp://ftp.lri.fr/LRI/articles/kesner/dBhor.ps.gz

  5. Curien, P.-L.: Categorical combinators, sequential algorithms and functional programming, 2nd edn. Progress in Theoretical Computer Science. Birkhaüser, Basel (1993)

    MATH  Google Scholar 

  6. Curien, P.-L., Hardin, T., Lévy, J.-J.: Confluence properties of weak and strong calculi of explicit substitutions. Journal of the ACM 43(2), 362–397 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. de Bruijn, N.: Lambda-calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the church-rosser theorem. Indag. Mat. 5(35), 381–392 (1972)

    Google Scholar 

  8. Dowek, G.: La part du calcul. Univesité de Paris VII, Thèse d’Habilitation à diriger des recherches (1999)

    Google Scholar 

  9. Dowek, G., Hardin, T., Kirchner, C.: Higher-order unification via explicit substitutions. In: LICS (1995)

    Google Scholar 

  10. Hindley, R., Seldin, J.P.: Introduction to Combinators and λ-calculus. London Mathematical Society (1980)

    Google Scholar 

  11. Kamareddine, F., Ríos, A.: Bridging de bruijn indices and variable names in explicit substitutions calculi. Logic Journal of the Interest Group of Pure and Applied Logic (IGPL) 6(6), 843–874 (1998)

    MATH  Google Scholar 

  12. Khasidashvili, Z.: Expression reduction systems. In: Proceedings of I. Vekua Institute of Applied Mathematics, Tbilisi, vol. 36 (1990)

    Google Scholar 

  13. Khasidashvili, Z., van Oostrom, V.: Context-sensitive Conditional Expression Reduction Systems. In: Proceedings of the Joint COMPUGRAPH/ SEMAGRAPH Workshop on Graph Rewriting and Computation (SEGRAGRA 1995), ENTCS, Volterra, vol. 2 (1995)

    Google Scholar 

  14. Klop, J.W.: Combinatory Reduction Systems. Mathematical Centre Tracts, vol. 127. CWI, Amsterdam (1980), PhD Thesis

    MATH  Google Scholar 

  15. Nipkow, T.: Higher order critical pairs. In: LICS, pp. 342–349 (1991)

    Google Scholar 

  16. Pagano, B.: Des Calculs de Susbtitution Explicite et leur application à la compilation des langages fonctionnels. PhD thesis, Université Paris VI (1998)

    Google Scholar 

  17. Pollack, R.: Closure under alpha-conversion. In: Barendregt, H., Nipkow, T. (eds.) TYPES 1993. LNCS, vol. 806, Springer, Heidelberg (1994)

    Google Scholar 

  18. Rehof, J., Sørensen, M.H.: The λ Δ calculus. In: Hagiya, M., Mitchell, J.C. (eds.) TACS 1994. LNCS, vol. 789, pp. 516–542. Springer, Heidelberg (1994)

    Google Scholar 

  19. Rose, K.: Explicit cyclic substitutions. In: Rusinowitch, M., Remy, J.-L. (eds.) CTRS 1992. LNCS, vol. 656, pp. 36–50. Springer, Heidelberg (1993)

    Google Scholar 

  20. van Oostrom, V., van Raamsdonk, F.: Weak orthogonality implies confluence: the higher-order case. In: Matiyasevich, Y.V., Nerode, A. (eds.) LFCS 1994. LNCS, vol. 813, pp. 379–392. Springer, Heidelberg (1994)

    Google Scholar 

  21. van Raamsdonk, F.: Confluence and Normalization for higher-Order Rewriting. PhD thesis, Amsterdam University, The Netherlands (1996)

    Google Scholar 

  22. Wolfram, D.: The Clausal Theory of Types. Cambridge Tracts in Theoretical Computer Science, vol. 21. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bonelli, E., Kesner, D., Ríos, A. (2000). A de Bruijn Notation for Higher-Order Rewriting. In: Bachmair, L. (eds) Rewriting Techniques and Applications. RTA 2000. Lecture Notes in Computer Science, vol 1833. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10721975_5

Download citation

  • DOI: https://doi.org/10.1007/10721975_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67778-9

  • Online ISBN: 978-3-540-44980-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics