iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/10692760_20
Improved Compressions of Cube-Connected Cycles Networks | SpringerLink
Skip to main content

Improved Compressions of Cube-Connected Cycles Networks

(Extended Abstract)

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1517))

Included in the following conference series:

Abstract

We present a new technique for the embedding of large cube-connected cycles networks (CCC) into smaller ones, a problem that arises when algorithms designed for an architecture of an ideal size are to be executed on an existing architecture of a fixed size. Using the new embedding strategy, we show that the (CCC) of dimension l can be embedded into the (CCC) of dimension k with dilation 1 and optimum load for any \(k,l \in {I \mkern-6mu N}\), k ≥ 8, such that \(\displaystyle \frac{5}{3} + c_k < \frac{l}{k} \leq 2\), \(\displaystyle c_k=\frac{4k+3}{3 \cdot 2^{\rule[-3pt]{0mm}{0mm}2/3 k}}\), thus improving known results. Our embedding technique also leads to improved dilation 1 embeddings in the case \(\displaystyle \frac{3}{2} < \frac{l}{k} \leq \frac{5}{3}+c_k\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Annexstein, F., Baumslag, M., Rosenberg, A.L.: Group action graphs and parallel architectures. SIAM Journal on Computing 19, 544–569 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berman, F., Snyder, L.: On mapping parallel algorithms into parallel architectures. Journal of Parallel and Distributed Computing 4, 439–458 (1987)

    Article  Google Scholar 

  3. Bhatt, S.N., Cai, J.-Y.: Taking random walks to grow trees in hypercubes. Journal of the ACM 40, 741–764 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bhatt, S.N., Chung, F.R.K., Leighton, F.T., Rosenberg, A.L.: Efficient embeddings of trees in hypercubes. SIAM Journal on Computing 21(1), 151–162 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bhatt, S.N., Chung, F.R.K., Hong, J.-W., Leighton, F.T., Obrenić, B., Rosenberg, A.L., Schwabe, E.J.: Optimal Emulations by Butterfly-Like Networks. Journal of the ACM 43, 293–330 (1996)

    Google Scholar 

  6. Bodlaender, H.L.: The classification of coverings of processor networks. Journal of Parallel and Distributed Computing 6, 166–182 (1989)

    Article  Google Scholar 

  7. Bodlaender, H.L., van Leeuwen, J.: Simulation of large networks on smaller networks. Information and Control 71, 143–180 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bokhari, S.H.: On the mapping problem. IEEE Transactions on Computers C-30, 207–214 (1981)

    Article  MathSciNet  Google Scholar 

  9. Fang, M.-Y., Chen, W.-T.: Embedding large binary trees to hypercube multiprocessors. In: Proc. International Conference on Parallel Processing, pp. I714–I715 (1991)

    Google Scholar 

  10. Feldmann, R., Unger, W.: The Cube-Connected-Cycle is a subgraph of the Butterfly network. Parallel Processing Letters 2, 13–19 (1992)

    Article  Google Scholar 

  11. Fellows, M.R.: Encoding graphs in graphs. Ph.D. Dissertation, University of California at San Diego (1985)

    Google Scholar 

  12. Fishburn, J.P., Finkel, R.A.: Quotient networks. IEEE Transactions on Computers C-31, 288–295 (1982)

    Article  MATH  Google Scholar 

  13. Gupta, A.K., Hambrusch, S.E.: Embedding large tree machines into small ones. In: Proc. 5th MIT Conference on Advanced Research in VLSI, pp. 179–198 (1988)

    Google Scholar 

  14. Heirich, A.: A scalable diffusion algorithm for dynamic mapping and load balancing on networks of arbitrary topology. International Journal on Foundations of Computer Science 8, 329–346 (1997)

    Article  MATH  Google Scholar 

  15. Kim, S.J., Browne, J.C.: A general approach to mapping of parallel computations upon multiprocessor architectures. In: Proc. International Conference on Parallel Processing, vol. III, pp. 1–8 (1988)

    Google Scholar 

  16. Klasing, R., Lüling, R., Monien, B.: Compressing cube-connected cycles and butterfly networks. In: Proc. 2nd IEEE Symposium on Parallel and Distributed Processing (SPDP 1990), pp. 858–865 (1990); Networks (to appear)

    Google Scholar 

  17. Koch, R.R., Leighton, F.T., Maggs, B.M., Rao, S.B., Rosenberg, A.L., Schwabe, E.J.: Work-preserving emulations of fixed-connection networks. Journal of the ACM 44(1), 104–147 (1997)

    Google Scholar 

  18. Kosaraju, S.R., Atallah, M.J.: Optimal simulations between mesh-connected arrays of processors. Journal ofthe ACM 35, 635–650 (1988)

    MathSciNet  Google Scholar 

  19. Leighton, F.T.: ntroduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann Publishers, San Mateo (1992)

    MATH  Google Scholar 

  20. Leighton, F.T., Maggs, B.M., Rao, S.B.: Packet routing and job-shop scheduling in 0(congestion + dilation) steps. Combinatorica 14, 167–186 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Leighton, F.T., Newman, M.J., Ranade, A.G., Schwabe, E.J.: Dynamic tree embed-dings in butterflies and hypercubes. SIAM Journal on Computing 21, 639–654 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Miller, Z., Sudborough, I.H.: Compressing Grids into Small Hypercubes. Networks 24, 327–358 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Moldovan, D.I., Fortes, J.A.B.: Partitioning and mapping algorithms into fixed size systolic arrays. IEEE Transactions on Computers C-35, 1–12 (1986)

    Article  MATH  Google Scholar 

  24. Monien, B.: Simulating binary trees on X-trees. In: Proc. 3rd ACM Symposium on Parallel Algorithms and Architectures (SPAA 1991), pp. 147–158 (1991)

    Google Scholar 

  25. Monien, B., Sudborough, I.H.: Embedding one Interconnection Network in Another. Computing Supplementum 7, 257–282 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nelson, P.A., Snyder, L.: Programming solutions to the algorithm contraction problem. In: Proc. International Conference on Parallel Processing, pp. 258–261 (1986)

    Google Scholar 

  27. Peine, R.: Cayley-Graphen und Netzwerke. Master Thesis, Universität-GH Pader-born, Fachbereich 17 - Mathematik/Informatik, Germany (1990)

    Google Scholar 

  28. Preparata, F.P., Vuillemin, J.E.: The cube-connected cycles: a versatile network for parallel computation. Communications of the ACM 24, 300–309 (1981)

    Article  MathSciNet  Google Scholar 

  29. Rosenberg, A.L.: Graph embeddings 1988: Recent breakthroughs, new directions. In: Reif, J.H. (ed.) AWOC 1988. LNCS, vol. 319, pp. 160–169. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

  30. Sarkar, V.: Partitioning and Scheduling Parallel Programs for Multiprocessors. MIT Press, Cambridge (1989)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Klasing, R. (1998). Improved Compressions of Cube-Connected Cycles Networks. In: Hromkovič, J., Sýkora, O. (eds) Graph-Theoretic Concepts in Computer Science. WG 1998. Lecture Notes in Computer Science, vol 1517. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10692760_20

Download citation

  • DOI: https://doi.org/10.1007/10692760_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65195-6

  • Online ISBN: 978-3-540-49494-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics