iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/1-4020-3598-5_12
Einsteinium | SpringerLink
Skip to main content

The discovery of einsteinium, element 99, came about during the analyses of nuclear products produced in and then recovered from test debris following a thermonuclear explosion (weapon test device, ‘Mike’, November 1952) at Eniwetok Atoll in the Pacific Ocean. The uranium present in this device was subjected to a very intense neutron flux (integrated fluence of about 1024 neutrons) in an extremely short time frame (few nanoseconds), which allowed a large number of multiple neutron captures with a minimal degree of decay of the products formed. Nuclei were formed with usually high neutron/proton ratios (very ‘heavy’ uranium isotopes), which then rapidly beta-decayed into new, transuranium isotopes through element 100. Scientists from several U.S. Government laboratories separated and analyzed extensively the debris samplings in the following weeks. From these investigations came the discovery and identification of einsteinium and fermium. The first element was named in honor of Albert Einstein, and assigned the symbol, E (later changed to the current symbol, Es). Additional details and discussions about the discovery of this element and the scientists involved are given in several references (Thompson et al., 1954; Ghiorso et al., 1955; Fields et al., 1956; Hyde et al., 1964; Seaborg and Loveland, 1990).

Subsequently, einsteinium has been produced in accelerator targets, and in reactors via successive neutron captures, starting with targets of plutonium or higher actinides. The first macroscopic and weighable quantities of einsteinium (few hundredths of a microgram of 253Es) were obtained in 1961. Today, up to ~2 mg can be present in special high-flux isotope reactor targets at the time of release from a reactor.

The transplutonium elements, where einsteinium is the fifth, have chemistries similar to those of the lanthanide elements, especially in their ionic states and in compounds. In essence, elements in the series sequentially add one f-electron in progressing to higher atomic numbers. Einsteinium is therefore an f-electron element, and its 5f electrons are considered fully localized, as opposed to those in the protactinium through plutonium grouping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,589.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Haire, R.G. (2008). Einsteinium. In: Morss, L.R., Edelstein, N.M., Fuger, J. (eds) The Chemistry of the Actinide and Transactinide Elements. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3598-5_12

Download citation

Publish with us

Policies and ethics