iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/0-8176-4481-4_15
Approximations of Shape Metrics and Application to Shape Warping and Empirical Shape Statistics | SpringerLink
Skip to main content

Approximations of Shape Metrics and Application to Shape Warping and Empirical Shape Statistics

  • Chapter
Statistics and Analysis of Shapes

Abstract

This chapter proposes a framework for dealing with two problems related to the analysis of shapes: the definition of the relevant set of shapes and that of defining a metric on it. Following a recent research monograph by Delfour and Zolésio [8], we consider the characteristic functions of the subsets of ℝ2 and their distance functions. The L 2 norm of the difference of characteristic functions and the L∞ and the W 1,2 norms of the difference of distance functions define interesting topologies, in particular that induced by the well-known Hausdorff distance. Because of practical considerations arising from the fact that we deal with image shapes defined on finite grids of pixels, we restrict our attention to subsets of ℝ2 of positive reach in the sense of Federer [12], with smooth boundaries of bounded curvature. For this particular set of shapes we show that the three previous topologies are equivalent. The next problem we consider is that of warping a shape onto another by infinitesimal gradient descent, minimizing the corresponding distance. Because the distance function involves an inf, it is not differentiable with respect to the shape. We propose a family of smooth approximations of the distance function which are continuous with respect to the Hausdorff topology, and hence with respect to the other two topologies. We compute the corresponding Gâteaux derivatives. They define deformation flows that can be used to warp a shape onto another by solving an initial value problem. We show several examples of this warping and prove properties of our approximations that relate to the existence of local minima. We then use this tool to produce computational de.nitions of the empirical mean and covariance of a set of shape examples. They yield an analog of the notion of principal modes of variation. We illustrate them on a variety of examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bookstein FL (1986) Size and shape spaces for landmark data in two dimensions. Statistical Science 1:181–242.

    Article  MATH  Google Scholar 

  2. Carne TK (1990) The geometry of shape spaces. Proc. London Math. Soc. 3(61):407–432.

    Article  MathSciNet  Google Scholar 

  3. Charpiat G, Faugeras O, Keriven R (2004) Approximations of shape metrics and application to shape warping and empirical shape statistics. Foundations of Computational Mathematics.

    Google Scholar 

  4. Choquet G (1969) Cours d’Analyse, volume II. Masson, Paris.

    MATH  Google Scholar 

  5. Cootes T, Taylor C, Cooper D, Graham J (1995) Active shape models — their training and application. Computer Vision and Image Understanding 61(1):38–59.

    Article  Google Scholar 

  6. Delfour MC, Zolésio J-P (July 1994) Shape analysis via oriented distance func-tions. Journal of Functional Analysis 123(1):129–201.

    Article  MATH  MathSciNet  Google Scholar 

  7. Delfour MC, Zolésio J-P (1998) Shape analysis via distance functions: local theory. In: Boundaries, interfaces and transitions, volume 13 of CRM Proc. Lecture Notes, pages 91–123. AMS, Providence, RI.

    Google Scholar 

  8. Delfour MC, Zolésio J-P (2001) Shapes and geometries. Advances in Design and Control. SIAM, Philadelphia.

    Google Scholar 

  9. Dryden IL, Mardia KV (1998) Statistical Shape Analysis. John Wiley & Sons, New York.

    MATH  Google Scholar 

  10. Dupuis P, Grenander U, Miller M (1998) Variational problems on flows of dif-feomorphisms for image matching. Quarterly of Applied Math. 56:587–600.

    MATH  MathSciNet  Google Scholar 

  11. Evans LC (1998) Partial Differential Equations, volume 19 of Graduate Studies in Mathematics. Proceedings of the American Mathematical Society.

    Google Scholar 

  12. Federer H (1951) Hausdorff measure and Lebesgue area. Proc. Nat. Acad. Sci. USA 37:90–94.

    Article  MATH  MathSciNet  Google Scholar 

  13. Fréchet M(1944) L’intégrale abstraite d’une fonction abstraite d’une variable abstraite et son application à la moyenne d’un élément aléatoire de nature quel-conque. Revue Scientifique, pages 483–512 (82ème année).

    Google Scholar 

  14. Fréchet M (1948) Les éléments aléatoires de nature quelconque dans un espace distancié. Ann. Inst. H. Poincaré X(IV):215–310.

    Google Scholar 

  15. Fréchet M(1961) Les courbes aléatoires. Bull. Inst. Internat. Statist. 38:499–504.

    Google Scholar 

  16. Grenander U (1993) General Pattern Theory. Oxford University Press, London.

    Google Scholar 

  17. Grenander U, Chow Y, Keenan D (1990) HANDS: A Pattern Theoretic Study of Biological Shapes. Springer-Verlag, Berlin and New York.

    MATH  Google Scholar 

  18. Grenander U, Miller M (1998) Computational anatomy: an emerging discipline. Quarterly of Applied Mathematics 56(4):617–694.

    MATH  MathSciNet  Google Scholar 

  19. Harding EG, Kendall DG, editors (1973) Foundation of a theory of random sets, Stochastic Geometry, pages 322–376. John Wiley & Sons, New York.

    Google Scholar 

  20. Karcher H (1977) Riemannian centre of mass and mollifier smoothing. Comm. Pure Appl. Math 30:509–541.

    Article  MATH  MathSciNet  Google Scholar 

  21. Kendall DG (1984) Shape manifolds, procrustean metrics and complex projec-tive spaces. Bulletin of London Mathematical Society 16:81–121.

    Article  MATH  MathSciNet  Google Scholar 

  22. Kendall DG (1989) A survey of the statistical theory of shape. Statistical Science 4(2):87–120.

    Article  MATH  MathSciNet  Google Scholar 

  23. Kendall W (1990) Probability, convexity, and harmonic maps with small image i: uniqueness and fine existence. Proc. London Math. Soc. 61(2):371–406.

    Article  MATH  MathSciNet  Google Scholar 

  24. Klassen E, Srivastava A, Mio W, Joshi SH (2004) Analysis of planar shapes using geodesic paths on shape spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(3):372–383.

    Article  Google Scholar 

  25. Leventon M, Grimson E, Faugeras O (June 2000) Statistical shape influence in geodesic active contours. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition, pages 316–323, Hilton Head Island, South Carolina. IEEE Computer Society.

    Google Scholar 

  26. Leventon M (2000) Anatomical shape models for medical image analysis. PhD thesis, MIT, Cambridge, MA.

    Google Scholar 

  27. Matheron G (1975) Random Sets and Integral Geometry. John Wiley & Sons, New York.

    MATH  Google Scholar 

  28. Miller M, Younes L (2001) Group actions, homeomorphisms, and matching: a general framework. International Journal of Computer Vision 41(1/2):61–84.

    Article  MATH  Google Scholar 

  29. Osher S, Paragios N, editors (2003) Geometric Level Set Methods in Imaging, Vision and Graphics. Springer-Verlag, Berlin and New York.

    Google Scholar 

  30. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49.

    Article  MATH  MathSciNet  Google Scholar 

  31. Pennec X (December 1996) L’Incertitude dans les problèmes de reconnaissance et de recalage — applications en imagerie médicale et biologie moléculaire. PhD thesis, Ecole Polytechnique, Palaiseau (France).

    Google Scholar 

  32. Rudin W (1966) Real and Complex Analysis. McGraw-Hill, New York.

    MATH  Google Scholar 

  33. Serra J (1982) Image Analysis and Mathematical Morphology. Academic Press, London.

    MATH  Google Scholar 

  34. Sethian JA (1999) Level set methods and fast marching methods: evolving in-terfaces in computational geometry, fluid mechanics, computer vision, and ma-terials sciences. Cambridge Monograph on Applied and Computational Mathe-matics. Cambridge University Press, London.

    Google Scholar 

  35. Small CG (1996) The Statistical Theory of Shapes. Springer-Verlag, Berlin and New York.

    Google Scholar 

  36. Soatto S, Yezzi AJ (May 2002) DEFORMOTION, deforming motion, shape average and the joint registration and segmentation of images. In: Heyden A, Sparr G, Nielsen M, Johansen P, editors, Proceedings of the 7th European Con-ference on Computer Vision, pages 32–47, Copenhagen, Denmark. Springer-Verlag, Berlin and New York.

    Google Scholar 

  37. Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow. J. Computational Physics 114:146–159.

    Article  MATH  Google Scholar 

  38. Toga A, Thompson P (2001) The role of image registration in brain mapping. Image and Vision Computing 19(1–2):3–24.

    Article  Google Scholar 

  39. Toga A, editor (1998) Brain Warping. Academic Press, London.

    Google Scholar 

  40. Trouvé A (1998) Diffeomorphisms groups and pattern matching in image analy-sis. International Journal of Computer Vision 28(3):213–221.

    Article  Google Scholar 

  41. Trouvé A, Younes L (June 2000) Diffeomorphic matching problems in one di-mension: designing and minimizing matching functionals. In: Proceedings of the 6th European Conference on Computer Vision, pages 573–587, Dublin, Ireland.

    Google Scholar 

  42. Trouvé A, Younes L (February 2000) Mise en correspondance par difféomorphismes en une dimension: définition et maximisation de fonction-nelles. In: 12ème Congrès RFIA’00, Paris.

    Google Scholar 

  43. Younes L (1998) Computable elastic distances between shapes. SIAM Journal of Applied Mathematics 58(2):565–586.

    Article  MATH  MathSciNet  Google Scholar 

  44. Younes L (1999) Optimal matching between shapes via elastic deformations. Image and Vision Computing 17(5/6):381–389.

    Article  Google Scholar 

  45. Younes L (2003) Invariance, déformations et reconnaissance de formes. Mathématiques et Applications. Springer-Verlag, Berlin and New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Boston

About this chapter

Cite this chapter

Charpiat, G., Faugeras, O., Keriven, R., Maurel, P. (2006). Approximations of Shape Metrics and Application to Shape Warping and Empirical Shape Statistics. In: Krim, H., Yezzi, A. (eds) Statistics and Analysis of Shapes. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4481-4_15

Download citation

Publish with us

Policies and ethics