default search action
Zhouchen Lin
Person information
- affiliation (PhD 2000): Peking University, Department of Machine Intelligence, Beijing, China
- affiliation (former): Microsoft Research Asia, Beijing, China
SPARQL queries
🛈 Please note that only 64% of the records listed on this page have a DOI. Therefore, DOI-based queries can only provide partial results.
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2025
- [e18]Zhouchen Lin, Ming-Ming Cheng, Ran He, Kurban Ubul, Wushouer Silamu, Hongbin Zha, Jie Zhou, Cheng-Lin Liu:
Pattern Recognition and Computer Vision - 7th Chinese Conference, PRCV 2024, Urumqi, China, October 18-20, 2024, Proceedings, Part I. Lecture Notes in Computer Science 15031, Springer 2025, ISBN 978-981-97-8486-8 [contents] - [e17]Zhouchen Lin, Ming-Ming Cheng, Ran He, Kurban Ubul, Wushouer Silamu, Hongbin Zha, Jie Zhou, Cheng-Lin Liu:
Pattern Recognition and Computer Vision - 7th Chinese Conference, PRCV 2024, Urumqi, China, October 18-20, 2024, Proceedings, Part II. Lecture Notes in Computer Science 15032, Springer 2025, ISBN 978-981-97-8489-9 [contents] - [e16]Zhouchen Lin, Ming-Ming Cheng, Ran He, Kurban Ubul, Wushouer Silamu, Hongbin Zha, Jie Zhou, Cheng-Lin Liu:
Pattern Recognition and Computer Vision - 7th Chinese Conference, PRCV 2024, Urumqi, China, October 18-20, 2024, Proceedings, Part III. Lecture Notes in Computer Science 15033, Springer 2025, ISBN 978-981-97-8501-8 [contents] - [e15]Zhouchen Lin, Ming-Ming Cheng, Ran He, Kurban Ubul, Wushouer Silamu, Hongbin Zha, Jie Zhou, Cheng-Lin Liu:
Pattern Recognition and Computer Vision - 7th Chinese Conference, PRCV 2024 Urumqi, China, October 18-20, 2024 Proceedings, Part IV. Lecture Notes in Computer Science 15034, Springer 2025, ISBN 978-981-97-8504-9 [contents] - [e14]Zhouchen Lin, Ming-Ming Cheng, Ran He, Kurban Ubul, Wushouer Silamu, Hongbin Zha, Jie Zhou, Cheng-Lin Liu:
Pattern Recognition and Computer Vision - 7th Chinese Conference, PRCV 2024, Urumqi, China, October 18-20, 2024, Proceedings, Part V. Lecture Notes in Computer Science 15035, Springer 2025, ISBN 978-981-97-8619-0 [contents] - [e13]Zhouchen Lin, Ming-Ming Cheng, Ran He, Kurban Ubul, Wushouer Silamu, Hongbin Zha, Jie Zhou, Cheng-Lin Liu:
Pattern Recognition and Computer Vision - 7th Chinese Conference, PRCV 2024, Urumqi, China, October 18-20, 2024, Proceedings, Part VI. Lecture Notes in Computer Science 15036, Springer 2025, ISBN 978-981-97-8507-0 [contents] - [e12]Zhouchen Lin, Ming-Ming Cheng, Ran He, Kurban Ubul, Wushouer Silamu, Hongbin Zha, Jie Zhou, Cheng-Lin Liu:
Pattern Recognition and Computer Vision - 7th Chinese Conference, PRCV 2024, Urumqi, China, October 18-20, 2024, Proceedings, Part VII. Lecture Notes in Computer Science 15037, Springer 2025, ISBN 978-981-97-8510-0 [contents] - [e11]Zhouchen Lin, Ming-Ming Cheng, Ran He, Kurban Ubul, Wushouer Silamu, Hongbin Zha, Jie Zhou, Cheng-Lin Liu:
Pattern Recognition and Computer Vision - 7th Chinese Conference, PRCV 2024, Urumqi, China, October 18-20, 2024, Proceedings, Part VIII. Lecture Notes in Computer Science 15038, Springer 2025, ISBN 978-981-97-8684-8 [contents] - [e10]Zhouchen Lin, Ming-Ming Cheng, Ran He, Kurban Ubul, Wushouer Silamu, Hongbin Zha, Jie Zhou, Cheng-Lin Liu:
Pattern Recognition and Computer Vision - 7th Chinese Conference, PRCV 2024, Urumqi, China, October 18-20, 2024, Proceedings, Part IX. Lecture Notes in Computer Science 15039, Springer 2025, ISBN 978-981-97-8691-6 [contents] - [e9]Zhouchen Lin, Ming-Ming Cheng, Ran He, Kurban Ubul, Wushouer Silamu, Hongbin Zha, Jie Zhou, Cheng-Lin Liu:
Pattern Recognition and Computer Vision - 7th Chinese Conference, PRCV 2024, Urumqi, China, October 18-20, 2024, Proceedings, Part X. Lecture Notes in Computer Science 15040, Springer 2025, ISBN 978-981-97-8791-3 [contents] - [e8]Zhouchen Lin, Ming-Ming Cheng, Ran He, Kurban Ubul, Wushouer Silamu, Hongbin Zha, Jie Zhou, Cheng-Lin Liu:
Pattern Recognition and Computer Vision - 7th Chinese Conference, PRCV 2024, Urumqi, China, October 18-20, 2024, Proceedings, Part XI. Lecture Notes in Computer Science 15041, Springer 2025, ISBN 978-981-97-8794-4 [contents] - [e7]Zhouchen Lin, Ming-Ming Cheng, Ran He, Kurban Ubul, Wushouer Silamu, Hongbin Zha, Jie Zhou, Cheng-Lin Liu:
Pattern Recognition and Computer Vision - 7th Chinese Conference, PRCV 2024, Urumqi, China, October 18-20, 2024, Proceedings, Part XII. Lecture Notes in Computer Science 15042, Springer 2025, ISBN 978-981-97-8857-6 [contents] - [e6]Zhouchen Lin, Ming-Ming Cheng, Ran He, Kurban Ubul, Wushouer Silamu, Hongbin Zha, Jie Zhou, Cheng-Lin Liu:
Pattern Recognition and Computer Vision - 7th Chinese Conference, PRCV 2024, Urumqi, China, October 18-20, 2024, Proceedings, Part XIII. Lecture Notes in Computer Science 15043, Springer 2025, ISBN 978-981-97-8492-9 [contents] - [e5]Zhouchen Lin, Ming-Ming Cheng, Ran He, Kurban Ubul, Wushouer Silamu, Hongbin Zha, Jie Zhou, Cheng-Lin Liu:
Pattern Recognition and Computer Vision - 7th Chinese Conference, PRCV 2024, Urumqi, China, October 18-20, 2024, Proceedings, Part XIV. Lecture Notes in Computer Science 15044, Springer 2025, ISBN 978-981-97-8495-0 [contents] - [e4]Zhouchen Lin, Ming-Ming Cheng, Ran He, Kurban Ubul, Wushouer Silamu, Hongbin Zha, Jie Zhou, Cheng-Lin Liu:
Pattern Recognition and Computer Vision - 7th Chinese Conference, PRCV 2024, Urumqi, China, October 18-20, 2024, Proceedings, Part XV. Lecture Notes in Computer Science 15045, Springer 2025, ISBN 978-981-97-8498-1 [contents] - 2024
- [j134]Zongpeng Zhang, Taoyun Ji, Mingqing Xiao, Wen Wang, Guojing Yu, Tong Lin, Yuwu Jiang, Xiaohua Zhou, Zhouchen Lin:
Cross-patient automatic epileptic seizure detection using patient-adversarial neural networks with spatio-temporal EEG augmentation. Biomed. Signal Process. Control. 89: 105664 (2024) - [j133]Bruce X. B. Yu, Jianlong Chang, Haixin Wang, Lingbo Liu, Shijie Wang, Zhiyu Wang, Junfan Lin, Lingxi Xie, Haojie Li, Zhouchen Lin, Qi Tian, Chang Wen Chen:
Visual Tuning. ACM Comput. Surv. 56(12): 297:1-297:38 (2024) - [j132]Pan Zhou, Xingyu Xie, Zhouchen Lin, Kim-Chuan Toh, Shuicheng Yan:
Win: Weight-Decay-Integrated Nesterov Acceleration for Faster Network Training. J. Mach. Learn. Res. 25: 83:1-83:74 (2024) - [j131]Shen Yan, Qingyan Meng, Mingqing Xiao, Yisen Wang, Zhouchen Lin:
Sampling complex topology structures for spiking neural networks. Neural Networks 172: 106121 (2024) - [j130]Zhengyang Shen, Yeqing Qiu, Jialun Liu, Lingshen He, Zhouchen Lin:
Efficient learning of Scale-Adaptive Nearly Affine Invariant Networks. Neural Networks 174: 106229 (2024) - [j129]Zhoutong Wu, Mingqing Xiao, Cong Fang, Zhouchen Lin:
Designing Universally-Approximating Deep Neural Networks: A First-Order Optimization Approach. IEEE Trans. Pattern Anal. Mach. Intell. 46(9): 6231-6246 (2024) - [j128]Pan Zhou, Xingyu Xie, Zhouchen Lin, Shuicheng Yan:
Towards Understanding Convergence and Generalization of AdamW. IEEE Trans. Pattern Anal. Mach. Intell. 46(9): 6486-6493 (2024) - [j127]Xingyu Xie, Pan Zhou, Huan Li, Zhouchen Lin, Shuicheng Yan:
Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models. IEEE Trans. Pattern Anal. Mach. Intell. 46(12): 9508-9520 (2024) - [j126]Xiangtai Li, Shilin Xu, Yibo Yang, Haobo Yuan, Guangliang Cheng, Yunhai Tong, Zhouchen Lin, Ming-Hsuan Yang, Dacheng Tao:
Panoptic-PartFormer++: A Unified and Decoupled View for Panoptic Part Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 46(12): 11087-11103 (2024) - [j125]Xiaoqin Zhang, Jingjing Zheng, Li Zhao, Zhengyuan Zhou, Zhouchen Lin:
Tensor Recovery With Weighted Tensor Average Rank. IEEE Trans. Neural Networks Learn. Syst. 35(1): 1142-1156 (2024) - [c157]Haixin Wang, Jianlong Chang, Yihang Zhai, Xiao Luo, Jinan Sun, Zhouchen Lin, Qi Tian:
LION: Implicit Vision Prompt Tuning. AAAI 2024: 5372-5380 - [c156]Yikang Li, Yeqing Qiu, Yuxuan Chen, Lingshen He, Zhouchen Lin:
Affine Equivariant Networks Based on Differential Invariants. CVPR 2024: 5546-5556 - [c155]Xin Xu, Zhouchen Lin:
MixCon: A Hybrid Architecture for Efficient and Adaptive Sequence Modeling. ECAI 2024: 1027-1034 - [c154]Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Di He, Zhouchen Lin:
Hebbian Learning based Orthogonal Projection for Continual Learning of Spiking Neural Networks. ICLR 2024 - [c153]Mingqing Xiao, Yixin Zhu, Di He, Zhouchen Lin:
Temporal Spiking Neural Networks with Synaptic Delay for Graph Reasoning. ICML 2024 - [c152]Yang Chen, Cong Fang, Zhouchen Lin, Bing Liu:
Relational Learning in Pre-Trained Models: A Theory from Hypergraph Recovery Perspective. ICML 2024 - [c151]Yiming Dong, Zhouchen Lin:
Reducing Memory Footprint in Deep Network Training by Gradient Space Reutilization. PRCV (2) 2024: 376-390 - [i133]Huan Li, Zhouchen Lin:
On the O(×d/T1/4) Convergence Rate of RMSProp and Its Momentum Extension Measured by 𝓁l Norm: Better Dependence on the Dimension. CoRR abs/2402.00389 (2024) - [i132]Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Di He, Zhouchen Lin:
Hebbian Learning based Orthogonal Projection for Continual Learning of Spiking Neural Networks. CoRR abs/2402.11984 (2024) - [i131]Yang Chen, Yitao Liang, Zhouchen Lin:
DIGIC: Domain Generalizable Imitation Learning by Causal Discovery. CoRR abs/2402.18910 (2024) - [i130]Mingqing Xiao, Yixin Zhu, Di He, Zhouchen Lin:
Temporal Spiking Neural Networks with Synaptic Delay for Graph Reasoning. CoRR abs/2405.16851 (2024) - [i129]Yang Chen, Cong Fang, Zhouchen Lin, Bing Liu:
Relational Learning in Pre-Trained Models: A Theory from Hypergraph Recovery Perspective. CoRR abs/2406.11249 (2024) - [i128]Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Di He, Zhouchen Lin:
Online Pseudo-Zeroth-Order Training of Neuromorphic Spiking Neural Networks. CoRR abs/2407.12516 (2024) - [i127]Lexiang Hu, Yisen Wang, Zhouchen Lin:
EKAN: Equivariant Kolmogorov-Arnold Networks. CoRR abs/2410.00435 (2024) - [i126]Yang Jin, Zhicheng Sun, Ningyuan Li, Kun Xu, Hao Jiang, Nan Zhuang, Quzhe Huang, Yang Song, Yadong Mu, Zhouchen Lin:
Pyramidal Flow Matching for Efficient Video Generative Modeling. CoRR abs/2410.05954 (2024) - [i125]Yang Chen, Yitao Liang, Zhouchen Lin:
Low-Dimension-to-High-Dimension Generalization And Its Implications for Length Generalization. CoRR abs/2410.08898 (2024) - [i124]Yisen Wang, Yichuan Mo, Dongxian Wu, Mingjie Li, Xingjun Ma, Zhouchen Lin:
On the Adversarial Transferability of Generalized "Skip Connections". CoRR abs/2410.08950 (2024) - [i123]Lexiang Hu, Yikang Li, Zhouchen Lin:
Symmetry Discovery for Different Data Types. CoRR abs/2410.09841 (2024) - 2023
- [j124]Yibo Yang, Zhengyang Shen, Huan Li, Zhouchen Lin:
Optimization-inspired manual architecture design and neural architecture search. Sci. China Inf. Sci. 66(11) (2023) - [j123]Mingqing Xiao, Shuxin Zheng, Chang Liu, Zhouchen Lin, Tie-Yan Liu:
Invertible Rescaling Network and Its Extensions. Int. J. Comput. Vis. 131(1): 134-159 (2023) - [j122]Huan Li, Zhouchen Lin:
Restarted Nonconvex Accelerated Gradient Descent: No More Polylogarithmic Factor in the in the O(epsilon^(-7/4)) Complexity. J. Mach. Learn. Res. 24: 157:1-157:37 (2023) - [j121]Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Yisen Wang, Zhouchen Lin:
SPIDE: A purely spike-based method for training feedback spiking neural networks. Neural Networks 161: 9-24 (2023) - [j120]Xingyu Xie, Qiuhao Wang, Zenan Ling, Xia Li, Guangcan Liu, Zhouchen Lin:
Optimization Induced Equilibrium Networks: An Explicit Optimization Perspective for Understanding Equilibrium Models. IEEE Trans. Pattern Anal. Mach. Intell. 45(3): 3604-3616 (2023) - [j119]Xiaoqin Zhang, Jingjing Zheng, Di Wang, Guiying Tang, Zhengyuan Zhou, Zhouchen Lin:
Structured Sparsity Optimization With Non-Convex Surrogates of $\ell _{2,0}$ℓ2,0-Norm: A Unified Algorithmic Framework. IEEE Trans. Pattern Anal. Mach. Intell. 45(5): 6386-6402 (2023) - [j118]Qi Chen, Yifei Wang, Zhengyang Geng, Yisen Wang, Jiansheng Yang, Zhouchen Lin:
Equilibrium Image Denoising With Implicit Differentiation. IEEE Trans. Image Process. 32: 1868-1881 (2023) - [c150]Ke Sun, Bing Yu, Zhouchen Lin, Zhanxing Zhu:
Patch-level Neighborhood Interpolation: A General and Effective Graph-based Regularization Strategy. ACML 2023: 1276-1291 - [c149]Zenan Ling, Xingyu Xie, Qiuhao Wang, Zongpeng Zhang, Zhouchen Lin:
Global Convergence of Over-parameterized Deep Equilibrium Models. AISTATS 2023: 767-787 - [c148]Pengyun Yue, Cong Fang, Zhouchen Lin:
On the Lower Bound of Minimizing Polyak-Łojasiewicz functions. COLT 2023: 2948-2968 - [c147]Pengyun Yue, Long Yang, Cong Fang, Zhouchen Lin:
Zeroth-order Optimization with Weak Dimension Dependency. COLT 2023: 4429-4472 - [c146]Qingyan Meng, Mingqing Xiao, Shen Yan, Yisen Wang, Zhouchen Lin, Zhi-Quan Luo:
Towards Memory- and Time-Efficient Backpropagation for Training Spiking Neural Networks. ICCV 2023: 6143-6153 - [c145]Yifei Wang, Qi Zhang, Tianqi Du, Jiansheng Yang, Zhouchen Lin, Yisen Wang:
A Message Passing Perspective on Learning Dynamics of Contrastive Learning. ICLR 2023 - [c144]Lingshen He, Yuxuan Chen, Zhengyang Shen, Yibo Yang, Zhouchen Lin:
Neural ePDOs: Spatially Adaptive Equivariant Partial Differential Operator Based Networks. ICLR 2023 - [c143]Mingjie Li, Yifei Wang, Yisen Wang, Zhouchen Lin:
Unbiased Stochastic Proximal Solver for Graph Neural Networks with Equilibrium States. ICLR 2023 - [c142]Yibo Yang, Haobo Yuan, Xiangtai Li, Zhouchen Lin, Philip H. S. Torr, Dacheng Tao:
Neural Collapse Inspired Feature-Classifier Alignment for Few-Shot Class-Incremental Learning. ICLR 2023 - [c141]Yi Wu, Yanyang Xu, Wenhao Zhu, Guojie Song, Zhouchen Lin, Liang Wang, Shaoguo Liu:
KDLGT: A Linear Graph Transformer Framework via Kernel Decomposition Approach. IJCAI 2023: 2370-2378 - [c140]Zongpeng Zhang, Zenan Ling, Tong Lin, Zhouchen Lin:
Gradient Descent Optimizes Normalization-Free ResNets. IJCNN 2023: 1-8 - [c139]Yuanyuan Liu, Fanhua Shang, Weixin An, Junhao Liu, Hongying Liu, Zhouchen Lin:
A Single-Loop Accelerated Extra-Gradient Difference Algorithm with Improved Complexity Bounds for Constrained Minimax Optimization. NeurIPS 2023 - [c138]Mingjie Li, Yisen Wang, Zhouchen Lin:
GEQ: Gaussian Kernel Inspired Equilibrium Models. NeurIPS 2023 - [c137]Jianghui Wang, Yang Chen, Xingyu Xie, Cong Fang, Zhouchen Lin:
Task-Robust Pre-Training for Worst-Case Downstream Adaptation. NeurIPS 2023 - [c136]Yifei Wang, Liangchen Li, Jiansheng Yang, Zhouchen Lin, Yisen Wang:
Balance, Imbalance, and Rebalance: Understanding Robust Overfitting from a Minimax Game Perspective. NeurIPS 2023 - [i122]Xiangtai Li, Shilin Xu, Yibo Yang, Haobo Yuan, Guangliang Cheng, Yunhai Tong, Zhouchen Lin, Dacheng Tao:
PanopticPartFormer++: A Unified and Decoupled View for Panoptic Part Segmentation. CoRR abs/2301.00954 (2023) - [i121]Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Yisen Wang, Zhouchen Lin:
SPIDE: A Purely Spike-based Method for Training Feedback Spiking Neural Networks. CoRR abs/2302.00232 (2023) - [i120]Yibo Yang, Haobo Yuan, Xiangtai Li, Zhouchen Lin, Philip H. S. Torr, Dacheng Tao:
Neural Collapse Inspired Feature-Classifier Alignment for Few-Shot Class Incremental Learning. CoRR abs/2302.03004 (2023) - [i119]Qingyan Meng, Mingqing Xiao, Shen Yan, Yisen Wang, Zhouchen Lin, Zhi-Quan Luo:
Towards Memory- and Time-Efficient Backpropagation for Training Spiking Neural Networks. CoRR abs/2302.14311 (2023) - [i118]Shihong Ding, Hanze Dong, Cong Fang, Zhouchen Lin, Tong Zhang:
Provable Particle-based Primal-Dual Algorithm for Mixed Nash Equilibrium. CoRR abs/2303.00970 (2023) - [i117]Yifei Wang, Qi Zhang, Tianqi Du, Jiansheng Yang, Zhouchen Lin, Yisen Wang:
A Message Passing Perspective on Learning Dynamics of Contrastive Learning. CoRR abs/2303.04435 (2023) - [i116]Haixin Wang, Jianlong Chang, Xiao Luo, Jinan Sun, Zhouchen Lin, Qi Tian:
LION: Implicit Vision Prompt Tuning. CoRR abs/2303.09992 (2023) - [i115]Bruce X. B. Yu, Jianlong Chang, Haixin Wang, Lingbo Liu, Shijie Wang, Zhiyu Wang, Junfan Lin, Lingxi Xie, Haojie Li, Zhouchen Lin, Qi Tian, Chang Wen Chen:
Visual Tuning. CoRR abs/2305.06061 (2023) - [i114]Long Yang, Zhixiong Huang, Fenghao Lei, Yucun Zhong, Yiming Yang, Cong Fang, Shiting Wen, Binbin Zhou, Zhouchen Lin:
Policy Representation via Diffusion Probability Model for Reinforcement Learning. CoRR abs/2305.13122 (2023) - [i113]Yi Hu, Haotong Yang, Zhouchen Lin, Muhan Zhang:
Code Prompting: a Neural Symbolic Method for Complex Reasoning in Large Language Models. CoRR abs/2305.18507 (2023) - [i112]Jianghui Wang, Cheng Yang, Xingyu Xie, Cong Fang, Zhouchen Lin:
Task-Robust Pre-Training for Worst-Case Downstream Adaptation. CoRR abs/2306.12070 (2023) - [i111]Yibo Yang, Haobo Yuan, Xiangtai Li, Jianlong Wu, Lefei Zhang, Zhouchen Lin, Philip H. S. Torr, Dacheng Tao, Bernard Ghanem:
Neural Collapse Terminus: A Unified Solution for Class Incremental Learning and Its Variants. CoRR abs/2308.01746 (2023) - [i110]Yuxuan Du, Yibo Yang, Tongliang Liu, Zhouchen Lin, Bernard Ghanem, Dacheng Tao:
ShadowNet for Data-Centric Quantum System Learning. CoRR abs/2308.11290 (2023) - [i109]Pengyun Yue, Hanzhen Zhao, Cong Fang, Di He, Liwei Wang, Zhouchen Lin, Song-Chun Zhu:
CORE: Common Random Reconstruction for Distributed Optimization with Provable Low Communication Complexity. CoRR abs/2309.13307 (2023) - [i108]Haotong Yang, Fanxu Meng, Zhouchen Lin, Muhan Zhang:
Explaining the Complex Task Reasoning of Large Language Models with Template-Content Structure. CoRR abs/2310.05452 (2023) - [i107]Yifei Wang, Liangchen Li, Jiansheng Yang, Zhouchen Lin, Yisen Wang:
Balance, Imbalance, and Rebalance: Understanding Robust Overfitting from a Minimax Game Perspective. CoRR abs/2310.19360 (2023) - 2022
- [b2]Zhouchen Lin, Huan Li, Cong Fang:
Alternating Direction Method of Multipliers for Machine Learning. Springer 2022, ISBN 978-981-16-9839-2, pp. 1-263 - [j117]Hanyuan Hang, Yuchao Cai, Hanfang Yang, Zhouchen Lin:
Under-bagging Nearest Neighbors for Imbalanced Classification. J. Mach. Learn. Res. 23: 118:1-118:63 (2022) - [j116]Huan Li, Zhouchen Lin, Yongchun Fang:
Variance Reduced EXTRA and DIGing and Their Optimal Acceleration for Strongly Convex Decentralized Optimization. J. Mach. Learn. Res. 23: 222:1-222:41 (2022) - [j115]Qingyan Meng, Shen Yan, Mingqing Xiao, Yisen Wang, Zhouchen Lin, Zhi-Quan Luo:
Training much deeper spiking neural networks with a small number of time-steps. Neural Networks 153: 254-268 (2022) - [j114]Jia Li, Mingqing Xiao, Cong Fang, Yue Dai, Chao Xu, Zhouchen Lin:
Training Neural Networks by Lifted Proximal Operator Machines. IEEE Trans. Pattern Anal. Mach. Intell. 44(6): 3334-3348 (2022) - [j113]Shiping Wang, Zhaoliang Chen, Shide Du, Zhouchen Lin:
Learning Deep Sparse Regularizers With Applications to Multi-View Clustering and Semi-Supervised Classification. IEEE Trans. Pattern Anal. Mach. Intell. 44(9): 5042-5055 (2022) - [j112]Pan Zhou, Xiao-Tong Yuan, Zhouchen Lin, Steven C. H. Hoi:
A Hybrid Stochastic-Deterministic Minibatch Proximal Gradient Method for Efficient Optimization and Generalization. IEEE Trans. Pattern Anal. Mach. Intell. 44(10): 5933-5946 (2022) - [j111]Risheng Liu, Jiaxin Gao, Jin Zhang, Deyu Meng, Zhouchen Lin:
Investigating Bi-Level Optimization for Learning and Vision From a Unified Perspective: A Survey and Beyond. IEEE Trans. Pattern Anal. Mach. Intell. 44(12): 10045-10067 (2022) - [c135]Qi Chen, Yifei Wang, Yisen Wang, Jianlong Chang, Qi Tian, Jiansheng Yang, Zhouchen Lin:
Efficient and Scalable Implicit Graph Neural Networks with Virtual Equilibrium. IEEE Big Data 2022: 864-873 - [c134]Nan Ke, Tong Lin, Zhouchen Lin, Xiao-Hua Zhou, Taoyun Ji:
Convolutional Transformer Networks for Epileptic Seizure Detection. CIKM 2022: 4109-4113 - [c133]Qingyan Meng, Mingqing Xiao, Shen Yan, Yisen Wang, Zhouchen Lin, Zhi-Quan Luo:
Training High-Performance Low-Latency Spiking Neural Networks by Differentiation on Spike Representation. CVPR 2022: 12434-12443 - [c132]Yifei Wang, Yisen Wang, Jiansheng Yang, Zhouchen Lin:
A Unified Contrastive Energy-based Model for Understanding the Generative Ability of Adversarial Training. ICLR 2022 - [c131]Yifei Wang, Qi Zhang, Yisen Wang, Jiansheng Yang, Zhouchen Lin:
Chaos is a Ladder: A New Theoretical Understanding of Contrastive Learning via Augmentation Overlap. ICLR 2022 - [c130]Mingjie Li, Yisen Wang, Xingyu Xie, Zhouchen Lin:
Optimization inspired Multi-Branch Equilibrium Models. ICLR 2022 - [c129]Qi Chen, Yifei Wang, Yisen Wang, Jiansheng Yang, Zhouchen Lin:
Optimization-Induced Graph Implicit Nonlinear Diffusion. ICML 2022: 3648-3661 - [c128]Mingjie Li, Xiaojun Guo, Yifei Wang, Yisen Wang, Zhouchen Lin:
G2CN: Graph Gaussian Convolution Networks with Concentrated Graph Filters. ICML 2022: 12782-12796 - [c127]Huan Li, Zhouchen Lin:
Restarted Nonconvex Accelerated Gradient Descent: No More Polylogarithmic Factor in the O(ε-7/4) Complexity. ICML 2022: 12901-12916 - [c126]Mingjie Li, Yisen Wang, Zhouchen Lin:
CerDEQ: Certifiable Deep Equilibrium Model. ICML 2022: 12998-13013 - [c125]Yuanyuan Liu, Fanhua Shang, Weixin An, Hongying Liu, Zhouchen Lin:
Kill a Bird with Two Stones: Closing the Convergence Gaps in Non-Strongly Convex Optimization by Directly Accelerated SVRG with Double Compensation and Snapshots. ICML 2022: 14008-14035 - [c124]Zhengyang Shen, Tao Hong, Qi She, Jinwen Ma, Zhouchen Lin:
PDO-s3DCNNs: Partial Differential Operator Based Steerable 3D CNNs. ICML 2022: 19827-19846 - [c123]Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Di He, Zhouchen Lin:
Online Training Through Time for Spiking Neural Networks. NeurIPS 2022 - [c122]Yibo Yang, Shixiang Chen, Xiangtai Li, Liang Xie, Zhouchen Lin, Dacheng Tao:
Inducing Neural Collapse in Imbalanced Learning: Do We Really Need a Learnable Classifier at the End of Deep Neural Network? NeurIPS 2022 - [c121]Haotong Yang, Zhouchen Lin, Muhan Zhang:
Rethinking Knowledge Graph Evaluation Under the Open-World Assumption. NeurIPS 2022 - [c120]Yibo Yang, Hong Wang, Haobo Yuan, Zhouchen Lin:
Towards Theoretically Inspired Neural Initialization Optimization. NeurIPS 2022 - [i106]Huan Li, Zhouchen Lin:
Restarted Nonconvex Accelerated Gradient Descent: No More Polylogarithmic Factor in the O(ε-7/4) Complexity. CoRR abs/2201.11411 (2022) - [i105]Yibo Yang, Liang Xie, Shixiang Chen, Xiangtai Li, Zhouchen Lin, Dacheng Tao:
Do We Really Need a Learnable Classifier at the End of Deep Neural Network? CoRR abs/2203.09081 (2022) - [i104]Yifei Wang, Yisen Wang, Jiansheng Yang, Zhouchen Lin:
A Unified Contrastive Energy-based Model for Understanding the Generative Ability of Adversarial Training. CoRR abs/2203.13455 (2022) - [i103]Yifei Wang, Qi Zhang, Yisen Wang, Jiansheng Yang, Zhouchen Lin:
Chaos is a Ladder: A New Theoretical Understanding of Contrastive Learning via Augmentation Overlap. CoRR abs/2203.13457 (2022) - [i102]Qingyan Meng, Mingqing Xiao, Shen Yan, Yisen Wang, Zhouchen Lin, Zhi-Quan Luo:
Training High-Performance Low-Latency Spiking Neural Networks by Differentiation on Spike Representation. CoRR abs/2205.00459 (2022) - [i101]Mingjie Li, Hao Kong, Zhouchen Lin:
SymNMF-Net for The Symmetric NMF Problem. CoRR abs/2205.13214 (2022) - [i100]Zenan Ling, Xingyu Xie, Qiuhao Wang, Zongpeng Zhang, Zhouchen Lin:
Global Convergence of Over-parameterized Deep Equilibrium Models. CoRR abs/2205.13814 (2022) - [i99]Yang Hu, Xiyuan Wang, Zhouchen Lin, Pan Li, Muhan Zhang:
Two-Dimensional Weisfeiler-Lehman Graph Neural Networks for Link Prediction. CoRR abs/2206.09567 (2022) - [i98]Qi Chen, Yifei Wang, Yisen Wang, Jiansheng Yang, Zhouchen Lin:
Optimization-Induced Graph Implicit Nonlinear Diffusion. CoRR abs/2206.14418 (2022) - [i97]Zhengyang Shen, Tao Hong, Qi She, Jinwen Ma, Zhouchen Lin:
PDO-s3DCNNs: Partial Differential Operator Based Steerable 3D CNNs. CoRR abs/2208.03720 (2022) - [i96]Xingyu Xie, Pan Zhou, Huan Li, Zhouchen Lin, Shuicheng Yan:
Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models. CoRR abs/2208.06677 (2022) - [i95]Haotong Yang, Zhouchen Lin, Muhan Zhang:
Rethinking Knowledge Graph Evaluation Under the Open-World Assumption. CoRR abs/2209.08858 (2022) - [i94]Mingqing Xiao, Shuxin Zheng, Chang Liu, Zhouchen Lin, Tie-Yan Liu:
Invertible Rescaling Network and Its Extensions. CoRR abs/2210.04188 (2022) - [i93]Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Di He, Zhouchen Lin:
Online Training Through Time for Spiking Neural Networks. CoRR abs/2210.04195 (2022) - [i92]Yibo Yang, Hong Wang, Haobo Yuan, Zhouchen Lin:
Towards Theoretically Inspired Neural Initialization Optimization. CoRR abs/2210.05956 (2022) - 2021
- [j110]Tiancheng Shen, Yibo Yang, Zhouchen Lin, Mingbin Zhang:
Recurrent learning with clique structures for prostate sparse-view CT artifacts reduction. IET Image Process. 15(3): 648-655 (2021) - [j109]Hanyuan Hang, Zhouchen Lin, Xiaoyu Liu, Hongwei Wen:
Histogram Transform Ensembles for Large-scale Regression. J. Mach. Learn. Res. 22: 95:1-95:87 (2021) - [j108]Hao Kong, Canyi Lu, Zhouchen Lin:
Tensor Q-rank: new data dependent definition of tensor rank. Mach. Learn. 110(7): 1867-1900 (2021) - [j107]Pan Zhou, Canyi Lu, Jiashi Feng, Zhouchen Lin, Shuicheng Yan:
Tensor Low-Rank Representation for Data Recovery and Clustering. IEEE Trans. Pattern Anal. Mach. Intell. 43(5): 1718-1732 (2021) - [j106]Xinbang Zhang, Jianlong Chang, Yiwen Guo, Gaofeng Meng, Shiming Xiang, Zhouchen Lin, Chunhong Pan:
DATA: Differentiable ArchiTecture Approximation With Distribution Guided Sampling. IEEE Trans. Pattern Anal. Mach. Intell. 43(9): 2905-2920 (2021) - [j105]Yuanyuan Liu, Fanhua Shang, Hongying Liu, Lin Kong, Licheng Jiao, Zhouchen Lin:
Accelerated Variance Reduction Stochastic ADMM for Large-Scale Machine Learning. IEEE Trans. Pattern Anal. Mach. Intell. 43(12): 4242-4255 (2021) - [j104]Jianlong Wu, Xingxu Xie, Liqiang Nie, Zhouchen Lin, Hongbin Zha:
Reconstruction regularized low-rank subspace learning for cross-modal retrieval. Pattern Recognit. 113: 107813 (2021) - [j103]Xiangtai Li, Xia Li, Ansheng You, Li Zhang, Guangliang Cheng, Kuiyuan Yang, Yunhai Tong, Zhouchen Lin:
Towards Efficient Scene Understanding via Squeeze Reasoning. IEEE Trans. Image Process. 30: 7050-7063 (2021) - [c119]Yangyang Li, Lin Kong, Fanhua Shang, Yuanyuan Liu, Hongying Liu, Zhouchen Lin:
Learned Extragradient ISTA with Interpretable Residual Structures for Sparse Coding. AAAI 2021: 8501-8509 - [c118]Zhengyang Shen, Tiancheng Shen, Zhouchen Lin, Jinwen Ma:
PDO-eS2CNNs: Partial Differential Operator Based Equivariant Spherical CNNs. AAAI 2021: 9585-9593 - [c117]Xiangtai Li, Hao He, Xia Li, Duo Li, Guangliang Cheng, Jianping Shi, Lubin Weng, Yunhai Tong, Zhouchen Lin:
PointFlow: Flowing Semantics Through Points for Aerial Image Segmentation. CVPR 2021: 4217-4226 - [c116]Yibo Yang, Shan You, Hongyang Li, Fei Wang, Chen Qian, Zhouchen Lin:
Towards Improving the Consistency, Efficiency, and Flexibility of Differentiable Neural Architecture Search. CVPR 2021: 6667-6676 - [c115]Huasong Zhong, Jianlong Wu, Chong Chen, Jianqiang Huang, Minghua Deng, Liqiang Nie, Zhouchen Lin, Xian-Sheng Hua:
Graph Contrastive Clustering. ICCV 2021: 9204-9213 - [c114]Zhengyang Geng, Meng-Hao Guo, Hongxu Chen, Xia Li, Ke Wei, Zhouchen Lin:
Is Attention Better Than Matrix Decomposition? ICLR 2021 - [c113]Ke Sun, Zhanxing Zhu, Zhouchen Lin:
AdaGCN: Adaboosting Graph Convolutional Networks into Deep Models. ICLR 2021 - [c112]Jingyi Cui, Hanyuan Hang, Yisen Wang, Zhouchen Lin:
GBHT: Gradient Boosting Histogram Transform for Density Estimation. ICML 2021: 2233-2243 - [c111]Ruili Feng, Zhouchen Lin, Jiapeng Zhu, Deli Zhao, Jingren Zhou, Zheng-Jun Zha:
Uncertainty Principles of Encoding GANs. ICML 2021: 3240-3251 - [c110]Hongwei Wen, Jingyi Cui, Hanyuan Hang, Jiabin Liu, Yisen Wang, Zhouchen Lin:
Leveraged Weighted Loss for Partial Label Learning. ICML 2021: 11091-11100 - [c109]Nan Ke, Tong Lin, Zhouchen Lin:
Channel-Weighted Squeeze-and-Excitation Networks For Epileptic Seizure Detection. ICTAI 2021: 666-673 - [c108]Lingshen He, Yuxuan Chen, Zhengyang Shen, Yiming Dong, Yisen Wang, Zhouchen Lin:
Efficient Equivariant Network. NeurIPS 2021: 5290-5302 - [c107]Yifei Wang, Yisen Wang, Jiansheng Yang, Zhouchen Lin:
Dissecting the Diffusion Process in Linear Graph Convolutional Networks. NeurIPS 2021: 5758-5769 - [c106]Yifei Wang, Zhengyang Geng, Feng Jiang, Chuming Li, Yisen Wang, Jiansheng Yang, Zhouchen Lin:
Residual Relaxation for Multi-view Representation Learning. NeurIPS 2021: 12104-12115 - [c105]Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Yisen Wang, Zhouchen Lin:
Training Feedback Spiking Neural Networks by Implicit Differentiation on the Equilibrium State. NeurIPS 2021: 14516-14528 - [c104]Zhengyang Geng, Xin-Yu Zhang, Shaojie Bai, Yisen Wang, Zhouchen Lin:
On Training Implicit Models. NeurIPS 2021: 24247-24260 - [c103]Lingshen He, Yiming Dong, Yisen Wang, Dacheng Tao, Zhouchen Lin:
Gauge Equivariant Transformer. NeurIPS 2021: 27331-27343 - [c102]Yifei Wang, Yisen Wang, Jiansheng Yang, Zhouchen Lin:
Reparameterized Sampling for Generative Adversarial Networks. ECML/PKDD (3) 2021: 494-509 - [c101]Yong Chen, Yuqing Hou, Shu Leng, Qing Zhang, Zhouchen Lin, Dell Zhang:
Long-Tail Hashing. SIGIR 2021: 1328-1338 - [i91]Yibo Yang, Shan You, Hongyang Li, Fei Wang, Chen Qian, Zhouchen Lin:
Towards Improving the Consistency, Efficiency, and Flexibility of Differentiable Neural Architecture Search. CoRR abs/2101.11342 (2021) - [i90]Risheng Liu, Jiaxin Gao, Jin Zhang, Deyu Meng, Zhouchen Lin:
Investigating Bi-Level Optimization for Learning and Vision from a Unified Perspective: A Survey and Beyond. CoRR abs/2101.11517 (2021) - [i89]Yifei Wang, Yisen Wang, Jiansheng Yang, Zhouchen Lin:
Dissecting the Diffusion Process in Linear Graph Convolutional Networks. CoRR abs/2102.10739 (2021) - [i88]Xiangtai Li, Hao He, Xia Li, Duo Li, Guangliang Cheng, Jianping Shi, Lubin Weng, Yunhai Tong, Zhouchen Lin:
PointFlow: Flowing Semantics Through Points for Aerial Image Segmentation. CoRR abs/2103.06564 (2021) - [i87]Huasong Zhong, Jianlong Wu, Chong Chen, Jianqiang Huang, Minghua Deng, Liqiang Nie, Zhouchen Lin, Xian-Sheng Hua:
Graph Contrastive Clustering. CoRR abs/2104.01429 (2021) - [i86]Huan Li, Zhouchen Lin:
Accelerated Gradient Tracking over Time-varying Graphs for Decentralized Optimization. CoRR abs/2104.02596 (2021) - [i85]Zhengyang Shen, Tiancheng Shen, Zhouchen Lin, Jinwen Ma:
PDO-eS2CNNs: Partial Differential Operator Based Equivariant Spherical CNNs. CoRR abs/2104.03584 (2021) - [i84]Xingyu Xie, Qiuhao Wang, Zenan Ling, Xia Li, Yisen Wang, Guangcan Liu, Zhouchen Lin:
Optimization Induced Equilibrium Networks. CoRR abs/2105.13228 (2021) - [i83]Hanyuan Hang, Tao Huang, Yuchao Cai, Hanfang Yang, Zhouchen Lin:
Gradient Boosted Binary Histogram Ensemble for Large-scale Regression. CoRR abs/2106.01986 (2021) - [i82]Hongwei Wen, Jingyi Cui, Hanyuan Hang, Jiabin Liu, Yisen Wang, Zhouchen Lin:
Leveraged Weighted Loss for Partial Label Learning. CoRR abs/2106.05731 (2021) - [i81]Jingyi Cui, Hanyuan Hang, Yisen Wang, Zhouchen Lin:
GBHT: Gradient Boosting Histogram Transform for Density Estimation. CoRR abs/2106.05738 (2021) - [i80]Qigong Sun, Xiufang Li, Fanhua Shang, Hongying Liu, Kang Yang, Licheng Jiao, Zhouchen Lin:
Quantized Neural Networks via {-1, +1} Encoding Decomposition and Acceleration. CoRR abs/2106.09886 (2021) - [i79]Yifei Wang, Yisen Wang, Jiansheng Yang, Zhouchen Lin:
Reparameterized Sampling for Generative Adversarial Networks. CoRR abs/2107.00352 (2021) - [i78]Hanyuan Hang, Yuchao Cai, Hanfang Yang, Zhouchen Lin:
Under-bagging Nearest Neighbors for Imbalanced Classification. CoRR abs/2109.00531 (2021) - [i77]Zhengyang Geng, Meng-Hao Guo, Hongxu Chen, Xia Li, Ke Wei, Zhouchen Lin:
Is Attention Better Than Matrix Decomposition? CoRR abs/2109.04553 (2021) - [i76]Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Yisen Wang, Zhouchen Lin:
Training Feedback Spiking Neural Networks by Implicit Differentiation on the Equilibrium State. CoRR abs/2109.14247 (2021) - [i75]Yifei Wang, Zhengyang Geng, Feng Jiang, Chuming Li, Yisen Wang, Jiansheng Yang, Zhouchen Lin:
Residual Relaxation for Multi-view Representation Learning. CoRR abs/2110.15348 (2021) - [i74]Ke Sun, Mingjie Li, Zhouchen Lin:
Pareto Adversarial Robustness: Balancing Spatial Robustness and Sensitivity-based Robustness. CoRR abs/2111.01996 (2021) - [i73]Zhengyang Geng, Xin-Yu Zhang, Shaojie Bai, Yisen Wang, Zhouchen Lin:
On Training Implicit Models. CoRR abs/2111.05177 (2021) - 2020
- [b1]Zhouchen Lin, Huan Li, Cong Fang:
Accelerated Optimization for Machine Learning - First-Order Algorithms. Springer 2020, ISBN 978-981-15-2909-2, pp. 1-275 - [j102]Huan Li, Zhouchen Lin:
On the Complexity Analysis of the Primal Solutions for the Accelerated Randomized Dual Coordinate Ascent. J. Mach. Learn. Res. 21: 33:1-33:45 (2020) - [j101]Huan Li, Zhouchen Lin:
Provable accelerated gradient method for nonconvex low rank optimization. Mach. Learn. 109(1): 103-134 (2020) - [j100]Canyi Lu, Jiashi Feng, Yudong Chen, Wei Liu, Zhouchen Lin, Shuicheng Yan:
Tensor Robust Principal Component Analysis with a New Tensor Nuclear Norm. IEEE Trans. Pattern Anal. Mach. Intell. 42(4): 925-938 (2020) - [j99]Risheng Liu, Shichao Cheng, Yi He, Xin Fan, Zhouchen Lin, Zhongxuan Luo:
On the Convergence of Learning-Based Iterative Methods for Nonconvex Inverse Problems. IEEE Trans. Pattern Anal. Mach. Intell. 42(12): 3027-3039 (2020) - [j98]Huan Li, Cong Fang, Zhouchen Lin:
Accelerated First-Order Optimization Algorithms for Machine Learning. Proc. IEEE 108(11): 2067-2082 (2020) - [j97]Huan Li, Zhouchen Lin:
Revisiting EXTRA for Smooth Distributed Optimization. SIAM J. Optim. 30(3): 1795-1821 (2020) - [j96]Yinwei Wei, Xiang Wang, Weili Guan, Liqiang Nie, Zhouchen Lin, Baoquan Chen:
Neural Multimodal Cooperative Learning Toward Micro-Video Understanding. IEEE Trans. Image Process. 29: 1-14 (2020) - [j95]Huan Li, Cong Fang, Wotao Yin, Zhouchen Lin:
Decentralized Accelerated Gradient Methods With Increasing Penalty Parameters. IEEE Trans. Signal Process. 68: 4855-4870 (2020) - [c100]Ke Sun, Zhouchen Lin, Zhanxing Zhu:
Multi-Stage Self-Supervised Learning for Graph Convolutional Networks on Graphs with Few Labeled Nodes. AAAI 2020: 5892-5899 - [c99]Jianlong Wu, Xingyu Xie, Liqiang Nie, Zhouchen Lin, Hongbin Zha:
Unified Graph and Low-Rank Tensor Learning for Multi-View Clustering. AAAI 2020: 6388-6395 - [c98]Yibo Yang, Jianlong Wu, Hongyang Li, Xia Li, Tiancheng Shen, Zhouchen Lin:
Dynamical System Inspired Adaptive Time Stepping Controller for Residual Network Families. AAAI 2020: 6648-6655 - [c97]Yueying Kao, Weiming Li, Qiang Wang, Zhouchen Lin, Wooshik Kim, Sunghoon Hong:
Synthetic Depth Transfer for Monocular 3D Object Pose Estimation in the Wild. AAAI 2020: 11221-11228 - [c96]Yibo Yang, Hongyang Li, Xia Li, Qijie Zhao, Jianlong Wu, Zhouchen Lin:
SOGNet: Scene Overlap Graph Network for Panoptic Segmentation. AAAI 2020: 12637-12644 - [c95]Xia Li, Yibo Yang, Qijie Zhao, Tiancheng Shen, Zhouchen Lin, Hong Liu:
Spatial Pyramid Based Graph Reasoning for Semantic Segmentation. CVPR 2020: 8947-8956 - [c94]Mingqing Xiao, Shuxin Zheng, Chang Liu, Yaolong Wang, Di He, Guolin Ke, Jiang Bian, Zhouchen Lin, Tie-Yan Liu:
Invertible Image Rescaling. ECCV (1) 2020: 126-144 - [c93]Xiangtai Li, Xia Li, Li Zhang, Guangliang Cheng, Jianping Shi, Zhouchen Lin, Shaohua Tan, Yunhai Tong:
Improving Semantic Segmentation via Decoupled Body and Edge Supervision. ECCV (17) 2020: 435-452 - [c92]Yuchao Cai, Hanyuan Hang, Hanfang Yang, Zhouchen Lin:
Boosted Histogram Transform for Regression. ICML 2020: 1251-1261 - [c91]Mingjie Li, Lingshen He, Zhouchen Lin:
Implicit Euler Skip Connections: Enhancing Adversarial Robustness via Numerical Stability. ICML 2020: 5874-5883 - [c90]Zhengyang Shen, Lingshen He, Zhouchen Lin, Jinwen Ma:
PDO-eConvs: Partial Differential Operator Based Equivariant Convolutions. ICML 2020: 8697-8706 - [c89]Xingyu Xie, Hao Kong, Jianlong Wu, Wayne Zhang, Guangcan Liu, Zhouchen Lin:
Maximum-and-Concatenation Networks. ICML 2020: 10483-10494 - [c88]Yibo Yang, Hongyang Li, Shan You, Fei Wang, Chen Qian, Zhouchen Lin:
ISTA-NAS: Efficient and Consistent Neural Architecture Search by Sparse Coding. NeurIPS 2020 - [i72]Huan Li, Zhouchen Lin:
Revisiting EXTRA for Smooth Distributed Optimization. CoRR abs/2002.10110 (2020) - [i71]Xia Li, Yibo Yang, Qijie Zhao, Tiancheng Shen, Zhouchen Lin, Hong Liu:
Spatial Pyramid Based Graph Reasoning for Semantic Segmentation. CoRR abs/2003.10211 (2020) - [i70]Mingqing Xiao, Shuxin Zheng, Chang Liu, Yaolong Wang, Di He, Guolin Ke, Jiang Bian, Zhouchen Lin, Tie-Yan Liu:
Invertible Image Rescaling. CoRR abs/2005.05650 (2020) - [i69]Bing Yu, Ke Sun, He Wang, Zhouchen Lin, Zhanxing Zhu:
Classify and Generate Reciprocally: Simultaneous Positive-Unlabelled Learning and Conditional Generation with Extra Data. CoRR abs/2006.07841 (2020) - [i68]Xingyu Xie, Hao Kong, Jianlong Wu, Wayne Zhang, Guangcan Liu, Zhouchen Lin:
Maximum-and-Concatenation Networks. CoRR abs/2007.04630 (2020) - [i67]Xiangtai Li, Xia Li, Li Zhang, Guangliang Cheng, Jianping Shi, Zhouchen Lin, Shaohua Tan, Yunhai Tong:
Improving Semantic Segmentation via Decoupled Body and Edge Supervision. CoRR abs/2007.10035 (2020) - [i66]Zhengyang Shen, Lingshen He, Zhouchen Lin, Jinwen Ma:
PDO-eConvs: Partial Differential Operator Based Equivariant Convolutions. CoRR abs/2007.10408 (2020) - [i65]Huan Li, Zhouchen Lin, Yongchun Fang:
Optimal Accelerated Variance Reduced EXTRA and DIGing for Strongly Convex and Smooth Decentralized Optimization. CoRR abs/2009.04373 (2020) - [i64]Yibo Yang, Hongyang Li, Shan You, Fei Wang, Chen Qian, Zhouchen Lin:
ISTA-NAS: Efficient and Consistent Neural Architecture Search by Sparse Coding. CoRR abs/2010.06176 (2020) - [i63]Xiangtai Li, Xia Li, Ansheng You, Li Zhang, Guangliang Cheng, Kuiyuan Yang, Yunhai Tong, Zhouchen Lin:
Towards Efficient Scene Understanding via Squeeze Reasoning. CoRR abs/2011.03308 (2020) - [i62]Risheng Liu, Zhu Liu, Pan Mu, Zhouchen Lin, Xin Fan, Zhongxuan Luo:
Learning Optimization-inspired Image Propagation with Control Mechanisms and Architecture Augmentations for Low-level Vision. CoRR abs/2012.05435 (2020)
2010 – 2019
- 2019
- [j94]Gaopeng Jian, Zhouchen Lin, Rongquan Feng:
Two-weight and three-weight linear codes based on Weil sums. Finite Fields Their Appl. 57: 92-107 (2019) - [j93]Huan Li, Zhouchen Lin:
Accelerated Alternating Direction Method of Multipliers: An Optimal O(1 / K) Nonergodic Analysis. J. Sci. Comput. 79(2): 671-699 (2019) - [j92]Zhisheng Zhong, Fangyin Wei, Zhouchen Lin, Chao Zhang:
ADA-Tucker: Compressing deep neural networks via adaptive dimension adjustment tucker decomposition. Neural Networks 110: 104-115 (2019) - [j91]Canyi Lu, Jiashi Feng, Zhouchen Lin, Tao Mei, Shuicheng Yan:
Subspace Clustering by Block Diagonal Representation. IEEE Trans. Pattern Anal. Mach. Intell. 41(2): 487-501 (2019) - [j90]Chunyu Wang, Yizhou Wang, Zhouchen Lin, Alan L. Yuille:
Robust 3D Human Pose Estimation from Single Images or Video Sequences. IEEE Trans. Pattern Anal. Mach. Intell. 41(5): 1227-1241 (2019) - [j89]Baohua Li, Huchuan Lu, Ying Zhang, Zhouchen Lin, Wei Wu:
Subspace Clustering Under Complex Noise. IEEE Trans. Circuits Syst. Video Technol. 29(4): 930-940 (2019) - [j88]Yan Zheng, Zhouchen Lin:
The Augmented Homogeneous Coordinates Matrix-Based Projective Mismatch Removal for Partial-Duplicate Image Search. IEEE Trans. Image Process. 28(1): 181-193 (2019) - [j87]Jianlong Wu, Zhouchen Lin, Hongbin Zha:
Essential Tensor Learning for Multi-View Spectral Clustering. IEEE Trans. Image Process. 28(12): 5910-5922 (2019) - [j86]Wenming Zheng, Cheng Lu, Zhouchen Lin, Tong Zhang, Zhen Cui, Wankou Yang:
ℓ1-Norm Heteroscedastic Discriminant Analysis Under Mixture of Gaussian Distributions. IEEE Trans. Neural Networks Learn. Syst. 30(10): 2898-2915 (2019) - [c87]Jia Li, Cong Fang, Zhouchen Lin:
Lifted Proximal Operator Machines. AAAI 2019: 4181-4188 - [c86]Cong Fang, Zhouchen Lin, Tong Zhang:
Sharp Analysis for Nonconvex SGD Escaping from Saddle Points. COLT 2019: 1192-1234 - [c85]Junjian Zhang, Chun-Guang Li, Chong You, Xianbiao Qi, Honggang Zhang, Jun Guo, Zhouchen Lin:
Self-Supervised Convolutional Subspace Clustering Network. CVPR 2019: 5473-5482 - [c84]Jianlong Wu, Keyu Long, Fei Wang, Chen Qian, Cheng Li, Zhouchen Lin, Hongbin Zha:
Deep Comprehensive Correlation Mining for Image Clustering. ICCV 2019: 8149-8158 - [c83]Xia Li, Zhisheng Zhong, Jianlong Wu, Yibo Yang, Zhouchen Lin, Hong Liu:
Expectation-Maximization Attention Networks for Semantic Segmentation. ICCV 2019: 9166-9175 - [c82]Xingyu Xie, Jianlong Wu, Guangcan Liu, Zhisheng Zhong, Zhouchen Lin:
Differentiable Linearized ADMM. ICML 2019: 6902-6911 - [c81]Tiancheng Shen, Xia Li, Zhisheng Zhong, Jianlong Wu, Zhouchen Lin:
R ^2 2 -Net: Recurrent and Recursive Network for Sparse-View CT Artifacts Removal. MICCAI (6) 2019: 319-327 - [c80]Ke Sun, Zhouchen Lin, Hantao Guo, Zhanxing Zhu:
Virtual Adversarial Training on Graph Convolutional Networks in Node Classification. PRCV (1) 2019: 431-443 - [c79]Lingshen He, Xingyu Xie, Zhouchen Lin:
Neural Ordinary Differential Equations with Envolutionary Weights. PRCV (1) 2019: 598-610 - [e3]Zhouchen Lin, Liang Wang, Jian Yang, Guangming Shi, Tieniu Tan, Nanning Zheng, Xilin Chen, Yanning Zhang:
Pattern Recognition and Computer Vision - Second Chinese Conference, PRCV 2019, Xi'an, China, November 8-11, 2019, Proceedings, Part I. Lecture Notes in Computer Science 11857, Springer 2019, ISBN 978-3-030-31653-2 [contents] - [e2]Zhouchen Lin, Liang Wang, Jian Yang, Guangming Shi, Tieniu Tan, Nanning Zheng, Xilin Chen, Yanning Zhang:
Pattern Recognition and Computer Vision - Second Chinese Conference, PRCV 2019, Xi'an, China, November 8-11, 2019, Proceedings, Part II. Lecture Notes in Computer Science 11858, Springer 2019, ISBN 978-3-030-31722-5 [contents] - [e1]Zhouchen Lin, Liang Wang, Jian Yang, Guangming Shi, Tieniu Tan, Nanning Zheng, Xilin Chen, Yanning Zhang:
Pattern Recognition and Computer Vision - Second Chinese Conference, PRCV 2019, Xi'an, China, November 8-11, 2019, Proceedings, Part III. Lecture Notes in Computer Science 11859, Springer 2019, ISBN 978-3-030-31725-6 [contents] - [i61]Cong Fang, Zhouchen Lin, Tong Zhang:
Sharp Analysis for Nonconvex SGD Escaping from Saddle Points. CoRR abs/1902.00247 (2019) - [i60]Ke Sun, Zhanxing Zhu, Zhouchen Lin:
Towards Understanding Adversarial Examples Systematically: Exploring Data Size, Task and Model Factors. CoRR abs/1902.11019 (2019) - [i59]Ke Sun, Zhanxing Zhu, Zhouchen Lin:
Enhancing the Robustness of Deep Neural Networks by Boundary Conditional GAN. CoRR abs/1902.11029 (2019) - [i58]Ke Sun, Zhanxing Zhu, Zhouchen Lin:
Multi-Stage Self-Supervised Learning for Graph Convolutional Networks. CoRR abs/1902.11038 (2019) - [i57]Ke Sun, Hantao Guo, Zhanxing Zhu, Zhouchen Lin:
Virtual Adversarial Training on Graph Convolutional Networks in Node Classification. CoRR abs/1902.11045 (2019) - [i56]Jianlong Wu, Keyu Long, Fei Wang, Chen Qian, Cheng Li, Zhouchen Lin, Hongbin Zha:
Deep Comprehensive Correlation Mining for Image Clustering. CoRR abs/1904.06925 (2019) - [i55]Junjian Zhang, Chun-Guang Li, Chong You, Xianbiao Qi, Honggang Zhang, Jun Guo, Zhouchen Lin:
Self-Supervised Convolutional Subspace Clustering Network. CoRR abs/1905.00149 (2019) - [i54]Xingyu Xie, Jianlong Wu, Zhisheng Zhong, Guangcan Liu, Zhouchen Lin:
Differentiable Linearized ADMM. CoRR abs/1905.06179 (2019) - [i53]Zhisheng Zhong, Fangyin Wei, Zhouchen Lin, Chao Zhang:
ADA-Tucker: Compressing Deep Neural Networks via Adaptive Dimension Adjustment Tucker Decomposition. CoRR abs/1906.07671 (2019) - [i52]Xia Li, Zhisheng Zhong, Jianlong Wu, Yibo Yang, Zhouchen Lin, Hong Liu:
Expectation-Maximization Attention Networks for Semantic Segmentation. CoRR abs/1907.13426 (2019) - [i51]Ke Sun, Zhouchen Lin, Zhanxing Zhu:
AdaGCN: Adaboosting Graph Convolutional Networks into Deep Models. CoRR abs/1908.05081 (2019) - [i50]Hao Kong, Zhouchen Lin:
Tensor Q-Rank: A New Data Dependent Tensor Rank. CoRR abs/1910.12016 (2019) - [i49]Yibo Yang, Hongyang Li, Xia Li, Qijie Zhao, Jianlong Wu, Zhouchen Lin:
SOGNet: Scene Overlap Graph Network for Panoptic Segmentation. CoRR abs/1911.07527 (2019) - [i48]Ke Sun, Bing Yu, Zhouchen Lin, Zhanxing Zhu:
Patch-level Neighborhood Interpolation: A General and Effective Graph-based Regularization Strategy. CoRR abs/1911.09307 (2019) - [i47]Yibo Yang, Jianlong Wu, Hongyang Li, Xia Li, Tiancheng Shen, Zhouchen Lin:
Dynamical System Inspired Adaptive Time Stepping Controller for Residual Network Families. CoRR abs/1911.10305 (2019) - [i46]Hanyuan Hang, Zhouchen Lin, Xiaoyu Liu, Hongwei Wen:
Histogram Transform Ensembles for Large-scale Regression. CoRR abs/1912.04738 (2019) - 2018
- [j85]Pan Zhou, Cong Fang, Zhouchen Lin, Chao Zhang, Edward Y. Chang:
Dictionary learning with structured noise. Neurocomputing 273: 414-423 (2018) - [j84]Chen-Yan Bai, Jia Li, Zhouchen Lin:
Demosaicking based on channel-correlation adaptive dictionary learning. J. Electronic Imaging 27(04): 043047 (2018) - [j83]Thierry Bouwmans, Namrata Vaswani, Paul Rodríguez, René Vidal, Zhouchen Lin:
Introduction to the Issue on Robust Subspace Learning and Tracking: Theory, Algorithms, and Applications. IEEE J. Sel. Top. Signal Process. 12(6): 1127-1130 (2018) - [j82]Hao Kong, Xingyu Xie, Zhouchen Lin:
t-Schatten-p Norm for Low-Rank Tensor Recovery. IEEE J. Sel. Top. Signal Process. 12(6): 1405-1419 (2018) - [j81]Zhouchen Lin, Chen Xu, Hongbin Zha:
Robust Matrix Factorization by Majorization Minimization. IEEE Trans. Pattern Anal. Mach. Intell. 40(1): 208-220 (2018) - [j80]Canyi Lu, Jiashi Feng, Shuicheng Yan, Zhouchen Lin:
A Unified Alternating Direction Method of Multipliers by Majorization Minimization. IEEE Trans. Pattern Anal. Mach. Intell. 40(3): 527-541 (2018) - [j79]Fanhua Shang, James Cheng, Yuanyuan Liu, Zhi-Quan Luo, Zhouchen Lin:
Bilinear Factor Matrix Norm Minimization for Robust PCA: Algorithms and Applications. IEEE Trans. Pattern Anal. Mach. Intell. 40(9): 2066-2080 (2018) - [j78]Thierry Bouwmans, Sajid Javed, Hongyang Zhang, Zhouchen Lin, Ricardo Otazo:
On the Applications of Robust PCA in Image and Video Processing. Proc. IEEE 106(8): 1427-1457 (2018) - [j77]Canyi Lu, Huan Li, Zhouchen Lin:
Optimized projections for compressed sensing via direct mutual coherence minimization. Signal Process. 151: 45-55 (2018) - [j76]Yameng Huang, Zhouchen Lin:
Binary Multidimensional Scaling for Hashing. IEEE Trans. Image Process. 27(1): 406-418 (2018) - [j75]Pan Zhou, Canyi Lu, Zhouchen Lin, Chao Zhang:
Tensor Factorization for Low-Rank Tensor Completion. IEEE Trans. Image Process. 27(3): 1152-1163 (2018) - [j74]Xiang Zhang, Jiarui Sun, Siwei Ma, Zhouchen Lin, Jian Zhang, Shiqi Wang, Wen Gao:
Globally Variance-Constrained Sparse Representation and Its Application in Image Set Coding. IEEE Trans. Image Process. 27(8): 3753-3765 (2018) - [j73]Xiaojie Guo, Zhouchen Lin:
Low-Rank Matrix Recovery Via Robust Outlier Estimation. IEEE Trans. Image Process. 27(11): 5316-5327 (2018) - [c78]Canyi Lu, Jiashi Feng, Zhouchen Lin, Shuicheng Yan:
Nonconvex Sparse Spectral Clustering by Alternating Direction Method of Multipliers and Its Convergence Analysis. AAAI 2018: 3714-3721 - [c77]Huan Li, Zhouchen Lin:
Construction of Incoherent Dictionaries via Direct Babel Function Minimization. ACML 2018: 598-613 - [c76]Huan Li, Yibo Yang, Dongmin Chen, Zhouchen Lin:
Optimization Algorithm Inspired Deep Neural Network Structure Design. ACML 2018: 614-629 - [c75]Jianlong Wu, Zhouchen Lin, Hongbin Zha:
Joint Dictionary Learning and Semantic Constrained Latent Subspace Projection for Cross-Modal Retrieval. CIKM 2018: 1663-1666 - [c74]Yibo Yang, Zhisheng Zhong, Tiancheng Shen, Zhouchen Lin:
Convolutional Neural Networks With Alternately Updated Clique. CVPR 2018: 2413-2422 - [c73]Xia Li, Jianlong Wu, Zhouchen Lin, Hong Liu, Hongbin Zha:
Recurrent Squeeze-and-Excitation Context Aggregation Net for Single Image Deraining. ECCV (7) 2018: 262-277 - [c72]Chen Xu, Jianqiang Yao, Zhouchen Lin, Wenwu Ou, Yuanbin Cao, Zhirong Wang, Hongbin Zha:
Alternating Multi-bit Quantization for Recurrent Neural Networks. ICLR (Poster) 2018 - [c71]Canyi Lu, Jiashi Feng, Zhouchen Lin, Shuicheng Yan:
Exact Low Tubal Rank Tensor Recovery from Gaussian Measurements. IJCAI 2018: 2504-2510 - [c70]Zhisheng Zhong, Tiancheng Shen, Yibo Yang, Zhouchen Lin, Chao Zhang:
Joint Sub-bands Learning with Clique Structures for Wavelet Domain Super-Resolution. NeurIPS 2018: 165-175 - [c69]Cong Fang, Chris Junchi Li, Zhouchen Lin, Tong Zhang:
SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path-Integrated Differential Estimator. NeurIPS 2018: 687-697 - [i45]Chen Xu, Jianqiang Yao, Zhouchen Lin, Wenwu Ou, Yuanbin Cao, Zhirong Wang, Hongbin Zha:
Alternating Multi-bit Quantization for Recurrent Neural Networks. CoRR abs/1802.00150 (2018) - [i44]Cong Fang, Yameng Huang, Zhouchen Lin:
Accelerating Asynchronous Algorithms for Convex Optimization by Momentum Compensation. CoRR abs/1802.09747 (2018) - [i43]Yibo Yang, Zhisheng Zhong, Tiancheng Shen, Zhouchen Lin:
Convolutional Neural Networks with Alternately Updated Clique. CoRR abs/1802.10419 (2018) - [i42]Canyi Lu, Jiashi Feng, Yudong Chen, Wei Liu, Zhouchen Lin, Shuicheng Yan:
Tensor Robust Principal Component Analysis with A New Tensor Nuclear Norm. CoRR abs/1804.03728 (2018) - [i41]Canyi Lu, Jiashi Feng, Zhouchen Lin, Tao Mei, Shuicheng Yan:
Subspace Clustering by Block Diagonal Representation. CoRR abs/1805.09243 (2018) - [i40]Canyi Lu, Jiashi Feng, Zhouchen Lin, Shuicheng Yan:
Exact Low Tubal Rank Tensor Recovery from Gaussian Measurements. CoRR abs/1806.02511 (2018) - [i39]Cong Fang, Chris Junchi Li, Zhouchen Lin, Tong Zhang:
SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path Integrated Differential Estimator. CoRR abs/1807.01695 (2018) - [i38]Jianlong Wu, Zhouchen Lin, Hongbin Zha:
Essential Tensor Learning for Multi-view Spectral Clustering. CoRR abs/1807.03602 (2018) - [i37]Xia Li, Jianlong Wu, Zhouchen Lin, Hong Liu, Hongbin Zha:
Recurrent Squeeze-and-Excitation Context Aggregation Net for Single Image Deraining. CoRR abs/1807.05698 (2018) - [i36]Risheng Liu, Shichao Cheng, Yi He, Xin Fan, Zhouchen Lin, Zhongxuan Luo:
On the Convergence of Learning-based Iterative Methods for Nonconvex Inverse Problems. CoRR abs/1808.05331 (2018) - [i35]Zhisheng Zhong, Tiancheng Shen, Yibo Yang, Zhouchen Lin, Chao Zhang:
Joint Sub-bands Learning with Clique Structures for Wavelet Domain Super-Resolution. CoRR abs/1809.04508 (2018) - [i34]Huan Li, Yibo Yang, Dongmin Chen, Zhouchen Lin:
Optimization Algorithm Inspired Deep Neural Network Structure Design. CoRR abs/1810.01638 (2018) - [i33]Fanhua Shang, James Cheng, Yuanyuan Liu, Zhi-Quan Luo, Zhouchen Lin:
Bilinear Factor Matrix Norm Minimization for Robust PCA: Algorithms and Applications. CoRR abs/1810.05186 (2018) - [i32]Jia Li, Cong Fang, Zhouchen Lin:
Lifted Proximal Operator Machines. CoRR abs/1811.01501 (2018) - 2017
- [j72]Yisong Chen, Antoni B. Chan, Zhouchen Lin, Kenji Suzuki, Guoping Wang:
Efficient tree-structured SfM by RANSAC generalized Procrustes analysis. Comput. Vis. Image Underst. 157: 179-189 (2017) - [j71]Jianlong Wu, Zhouchen Lin, Wenming Zheng, Hongbin Zha:
Locality-constrained linear coding based bi-layer model for multi-view facial expression recognition. Neurocomputing 239: 143-152 (2017) - [j70]Cong Fang, Zhenyu Zhao, Pan Zhou, Zhouchen Lin:
Feature learning via partial differential equation with applications to face recognition. Pattern Recognit. 69: 14-25 (2017) - [j69]Yang Lin, Zhouchen Lin, Hongbin Zha:
The Shape Interaction Matrix-Based Affine Invariant Mismatch Removal for Partial-Duplicate Image Search. IEEE Trans. Image Process. 26(2): 561-573 (2017) - [j68]Jia Li, Chen-Yan Bai, Zhouchen Lin, Jian Yu:
Automatic Design of High-Sensitivity Color Filter Arrays With Panchromatic Pixels. IEEE Trans. Image Process. 26(2): 870-883 (2017) - [j67]Pan Zhou, Chao Zhang, Zhouchen Lin:
Bilevel Model-Based Discriminative Dictionary Learning for Recognition. IEEE Trans. Image Process. 26(3): 1173-1187 (2017) - [j66]Jia Li, Chen-Yan Bai, Zhouchen Lin, Jian Yu:
Optimized Color Filter Arrays for Sparse Representation-Based Demosaicking. IEEE Trans. Image Process. 26(5): 2381-2393 (2017) - [j65]Liansheng Zhuang, Zihan Zhou, Shenghua Gao, Jingwen Yin, Zhouchen Lin, Yi Ma:
Label Information Guided Graph Construction for Semi-Supervised Learning. IEEE Trans. Image Process. 26(9): 4182-4192 (2017) - [c68]Cong Fang, Zhouchen Lin:
Parallel Asynchronous Stochastic Variance Reduction for Nonconvex Optimization. AAAI 2017: 794-800 - [c67]Chen Xu, Zhouchen Lin, Hongbin Zha:
A Unified Convex Surrogate for the Schatten-p Norm. AAAI 2017: 926-932 - [c66]Hongyang Zhang, Shan You, Zhouchen Lin, Chao Xu:
Fast Compressive Phase Retrieval under Bounded Noise. AAAI 2017: 2884-2890 - [c65]Xiang Zhang, Siwei Ma, Zhouchen Lin, Jian Zhang, Shiqi Wang, Wen Gao:
Globally Variance-Constrained Sparse Representation for Rate-Distortion Optimized Image Representation. DCC 2017: 380-389 - [c64]Xiaojie Guo, Zhouchen Lin:
ROUTE: Robust Outlier Estimation for Low Rank Matrix Recovery. IJCAI 2017: 1746-1752 - [c63]Yang Lin, Li Yang, Zhouchen Lin, Tong Lin, Hongbin Zha:
Factorization for projective and metric reconstruction via truncated nuclear norm. IJCNN 2017: 470-477 - [c62]Cong Fang, Feng Cheng, Zhouchen Lin:
Faster and Non-ergodic O(1/K) Stochastic Alternating Direction Method of Multipliers. NIPS 2017: 4476-4485 - [c61]Jianlong Wu, Zhouchen Lin, Hongbin Zha:
Joint Latent Subspace Learning and Regression for Cross-Modal Retrieval. SIGIR 2017: 917-920 - [i31]Canyi Lu, Jiashi Feng, Yudong Chen, Wei Liu, Zhouchen Lin, Shuicheng Yan:
Tensor Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Tensors via Convex Optimization. CoRR abs/1708.04181 (2017) - [i30]Canyi Lu, Jiashi Feng, Zhouchen Lin, Shuicheng Yan:
Nonconvex Sparse Spectral Clustering by Alternating Direction Method of Multipliers and Its Convergence Analysis. CoRR abs/1712.02979 (2017) - 2016
- [j64]Liansheng Zhuang, Jingjing Wang, Zhouchen Lin, Allen Y. Yang, Yi Ma, Nenghai Yu:
Locality-preserving low-rank representation for graph construction from nonlinear manifolds. Neurocomputing 175: 715-722 (2016) - [j63]Zhenyu Zhao, Zhouchen Lin, Yi Wu:
A fast alternating time-splitting approach for learning partial differential equations. Neurocomputing 185: 171-182 (2016) - [j62]Jia Li, Chen-Yan Bai, Zhouchen Lin, Jian Yu:
Penrose high-dynamic-range imaging. J. Electronic Imaging 25(3): 033024 (2016) - [j61]Ming Yin, Junbin Gao, Zhouchen Lin:
Laplacian Regularized Low-Rank Representation and Its Applications. IEEE Trans. Pattern Anal. Mach. Intell. 38(3): 504-517 (2016) - [j60]Zhouchen Lin, Yameng Huang:
Fast Multidimensional Ellipsoid-Specific Fitting by Alternating Direction Method of Multipliers. IEEE Trans. Pattern Anal. Mach. Intell. 38(5): 1021-1026 (2016) - [j59]Risheng Liu, Guangyu Zhong, Junjie Cao, Zhouchen Lin, Shiguang Shan, Zhongxuan Luo:
Learning to Diffuse: A New Perspective to Design PDEs for Visual Analysis. IEEE Trans. Pattern Anal. Mach. Intell. 38(12): 2457-2471 (2016) - [j58]Qi Li, Zhenan Sun, Zhouchen Lin, Ran He, Tieniu Tan:
Transformation invariant subspace clustering. Pattern Recognit. 59: 142-155 (2016) - [j57]Canyi Lu, Jinhui Tang, Shuicheng Yan, Zhouchen Lin:
Nonconvex Nonsmooth Low Rank Minimization via Iteratively Reweighted Nuclear Norm. IEEE Trans. Image Process. 25(2): 829-839 (2016) - [j56]Chen-Yan Bai, Jia Li, Zhouchen Lin, Jian Yu:
Automatic Design of Color Filter Arrays in the Frequency Domain. IEEE Trans. Image Process. 25(4): 1793-1807 (2016) - [j55]Canyi Lu, Shuicheng Yan, Zhouchen Lin:
Convex Sparse Spectral Clustering: Single-View to Multi-View. IEEE Trans. Image Process. 25(6): 2833-2843 (2016) - [j54]Hongyang Zhang, Zhouchen Lin, Chao Zhang:
Completing Low-Rank Matrices With Corrupted Samples From Few Coefficients in General Basis. IEEE Trans. Inf. Theory 62(8): 4748-4768 (2016) - [j53]Pan Zhou, Zhouchen Lin, Chao Zhang:
Integrated Low-Rank-Based Discriminative Feature Learning for Recognition. IEEE Trans. Neural Networks Learn. Syst. 27(5): 1080-1093 (2016) - [j52]Yifan Fu, Junbin Gao, David Tien, Zhouchen Lin, Xia Hong:
Tensor LRR and Sparse Coding-Based Subspace Clustering. IEEE Trans. Neural Networks Learn. Syst. 27(10): 2120-2133 (2016) - [c60]Canyi Lu, Huan Li, Zhouchen Lin, Shuicheng Yan:
Fast Proximal Linearized Alternating Direction Method of Multiplier with Parallel Splitting. AAAI 2016: 739-745 - [c59]Chen Xu, Zhouchen Lin, Zhenyu Zhao, Hongbin Zha:
Relaxed Majorization-Minimization for Non-Smooth and Non-Convex Optimization. AAAI 2016: 812-818 - [c58]Jin-shan Pan, Zhouchen Lin, Zhixun Su, Ming-Hsuan Yang:
Robust Kernel Estimation with Outliers Handling for Image Deblurring. CVPR 2016: 2800-2808 - [c57]Canyi Lu, Jiashi Feng, Yudong Chen, Wei Liu, Zhouchen Lin, Shuicheng Yan:
Tensor Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Tensors via Convex Optimization. CVPR 2016: 5249-5257 - [c56]Li Shen, Zhouchen Lin, Qingming Huang:
Relay Backpropagation for Effective Learning of Deep Convolutional Neural Networks. ECCV (7) 2016: 467-482 - [c55]Jianlong Wu, Zhouchen Lin, Hongbin Zha:
Multi-view common space learning for emotion recognition in the wild. ICMI 2016: 464-471 - [c54]Yuqing Hou, Zhouchen Lin, Jin-ge Yao:
Subspace Clustering Based Tag Sharing for Inductive Tag Matrix Refinement with Complex Errors. SIGIR 2016: 1013-1016 - [i29]Canyi Lu, Jiashi Feng, Shuicheng Yan, Zhouchen Lin:
A Unified Alternating Direction Method of Multipliers by Majorization Minimization. CoRR abs/1607.02584 (2016) - [i28]Xiang Zhang, Jiarui Sun, Siwei Ma, Zhouchen Lin, Jian Zhang, Shiqi Wang, Wen Gao:
Globally Variance-Constrained Sparse Representation for Image Set Compression. CoRR abs/1608.04902 (2016) - [i27]Chen Xu, Zhouchen Lin, Hongbin Zha:
A Unified Convex Surrogate for the Schatten-$p$ Norm. CoRR abs/1611.08372 (2016) - 2015
- [j51]Zhenyu Zhao, Cong Fang, Zhouchen Lin, Yi Wu:
A robust hybrid method for text detection in natural scenes by learning-based partial differential equations. Neurocomputing 168: 23-34 (2015) - [j50]Zhouchen Lin, Risheng Liu, Huan Li:
Linearized alternating direction method with parallel splitting and adaptive penalty for separable convex programs in machine learning. Mach. Learn. 99(2): 287-325 (2015) - [j49]Hongyang Zhang, Zhouchen Lin, Chao Zhang, Junbin Gao:
Relations Among Some Low-Rank Subspace Recovery Models. Neural Comput. 27(9): 1915-1950 (2015) - [j48]Jianjun Qian, Lei Luo, Jian Yang, Fanlong Zhang, Zhouchen Lin:
Robust nuclear norm regularized regression for face recognition with occlusion. Pattern Recognit. 48(10): 3145-3159 (2015) - [j47]Canyi Lu, Zhouchen Lin, Shuicheng Yan:
Smoothed Low Rank and Sparse Matrix Recovery by Iteratively Reweighted Least Squares Minimization. IEEE Trans. Image Process. 24(2): 646-654 (2015) - [j46]Chen-Yan Bai, Jia Li, Zhouchen Lin, Jian Yu, Yen-Wei Chen:
Penrose Demosaicking. IEEE Trans. Image Process. 24(5): 1672-1684 (2015) - [j45]Li Shen, Gang Sun, Qingming Huang, Shuhui Wang, Zhouchen Lin, Enhua Wu:
Multi-Level Discriminative Dictionary Learning With Application to Large Scale Image Classification. IEEE Trans. Image Process. 24(10): 3109-3123 (2015) - [j44]Liansheng Zhuang, Shenghua Gao, Jinhui Tang, Jingjing Wang, Zhouchen Lin, Yi Ma, Nenghai Yu:
Constructing a Nonnegative Low-Rank and Sparse Graph With Data-Adaptive Features. IEEE Trans. Image Process. 24(11): 3717-3728 (2015) - [j43]Ming Yin, Junbin Gao, Zhouchen Lin, Qinfeng Shi, Yi Guo:
Dual Graph Regularized Latent Low-Rank Representation for Subspace Clustering. IEEE Trans. Image Process. 24(12): 4918-4933 (2015) - [c53]Canyi Lu, Changbo Zhu, Chunyan Xu, Shuicheng Yan, Zhouchen Lin:
Generalized Singular Value Thresholding. AAAI 2015: 1805-1811 - [c52]Hongyang Zhang, Zhouchen Lin, Chao Zhang, Edward Y. Chang:
Exact Recoverability of Robust PCA via Outlier Pursuit with Tight Recovery Bounds. AAAI 2015: 3143-3149 - [c51]Baohua Li, Ying Zhang, Zhouchen Lin, Huchuan Lu:
Subspace clustering by Mixture of Gaussian Regression. CVPR 2015: 2094-2102 - [c50]Zhizhong Li, Deli Zhao, Zhouchen Lin, Edward Y. Chang:
A new retraction for accelerating the Riemannian three-factor low-rank matrix completion algorithm. CVPR 2015: 4530-4538 - [c49]Chun-Guang Li, Zhouchen Lin, Honggang Zhang, Jun Guo:
Learning Semi-Supervised Representation Towards a Unified Optimization Framework for Semi-Supervised Learning. ICCV 2015: 2767-2775 - [c48]Jianlong Wu, Zhouchen Lin, Hongbin Zha:
Multiple Models Fusion for Emotion Recognition in the Wild. ICMI 2015: 475-481 - [c47]