default search action
Sudeepa Roy
Person information
- affiliation: Duke University, Durham, NC, USA
Other persons with a similar name
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j30]Brit Youngmann, Michael J. Cafarella, Amir Gilad, Sudeepa Roy:
Summarized Causal Explanations For Aggregate Views. Proc. ACM Manag. Data 2(1): 71:1-71:27 (2024) - [j29]Hangdong Zhao, Shaleen Deep, Paraschos Koutris, Sudeepa Roy, Val Tannen:
Evaluating Datalog over Semirings: A Grounding-based Approach. Proc. ACM Manag. Data 2(2): 90 (2024) - [j28]Yihao Hu, Amir Gilad, Kristin Stephens-Martinez, Sudeepa Roy, Jun Yang:
Qr-Hint: Actionable Hints Towards Correcting Wrong SQL Queries. Proc. ACM Manag. Data 2(3): 164 (2024) - [c47]Travis Seale-Carlisle, Saksham Jain, Courtney Lee, Caroline Levenson, Swathi Ramprasad, Brandon Garrett, Sudeepa Roy, Cynthia Rudin, Alexander Volfovsky:
Evaluating Pre-trial Programs Using Interpretable Machine Learning Matching Algorithms for Causal Inference. AAAI 2024: 22331-22340 - [c46]Jun Yang, Amir Gilad, Yihao Hu, Hanze Meng, Zhengjie Miao, Sudeepa Roy, Kristin Stephens-Martinez:
What Teaching Databases Taught Us about Researching Databases: Extended Talk Abstract. DataEd@SIGMOD 2024 - [c45]Sudeepa Roy, Amir Gilad, Yihao Hu, Hanze Meng, Zhengjie Miao, Kristin Stephens-Martinez, Jun Yang:
How Database Theory Helps Teach Relational Queries in Database Education (Invited Talk). ICDT 2024: 2:1-2:9 - [i37]Seyedeh Baharan Khatami, Harsh Parikh, Haowei Chen, Sudeepa Roy, Babak Salimi:
Graph Neural Network based Double Machine Learning Estimator of Network Causal Effects. CoRR abs/2403.11332 (2024) - [i36]Hangdong Zhao, Shaleen Deep, Paraschos Koutris, Sudeepa Roy, Val Tannen:
Evaluating Datalog over Semirings: A Grounding-based Approach. CoRR abs/2403.12436 (2024) - [i35]Yihao Hu, Amir Gilad, Kristin Stephens-Martinez, Sudeepa Roy, Jun Yang:
Qr-Hint: Actionable Hints Towards Correcting Wrong SQL Queries. CoRR abs/2404.04352 (2024) - [i34]Brit Youngmann, Michael J. Cafarella, Amir Gilad, Sudeepa Roy:
Summarized Causal Explanations For Aggregate Views (Full version). CoRR abs/2410.11435 (2024) - [i33]Yuxi Liu, Fangzhu Shen, Kushagra Ghosh, Amir Gilad, Benny Kimelfeld, Sudeepa Roy:
The Cost of Representation by Subset Repairs. CoRR abs/2410.16501 (2024) - [i32]Pablo Barceló, Pierre Bourhis, Stefan Mengel, Sudeepa Roy:
Representation, Provenance, and Explanations in Database Theory and Logic (Dagstuhl Seminar 24032). Dagstuhl Reports 14(1): 49-71 (2024) - 2023
- [j27]Tingyu Wang, Yuchao Tao, Amir Gilad, Ashwin Machanavajjhala, Sudeepa Roy:
Explaining Differentially Private Query Results With DPXPlain. Proc. VLDB Endow. 16(12): 3962-3965 (2023) - [j26]Shweta Patwa, Danyu Sun, Amir Gilad, Ashwin Machanavajjhala, Sudeepa Roy:
DP-PQD: Privately Detecting Per-Query Gaps In Synthetic Data Generated By Black-Box Mechanisms. Proc. VLDB Endow. 17(1): 65-78 (2023) - [c44]Fangzhu Shen, Kayvon Heravi, Oscar Gomez, Sainyam Galhotra, Amir Gilad, Sudeepa Roy, Babak Salimi:
Causal What-If and How-To Analysis Using HypeR. ICDE 2023: 3663-3666 - [c43]Hanze Meng, Zhengjie Miao, Amir Gilad, Sudeepa Roy, Jun Yang:
Characterizing and Verifying Queries Via CINSGEN. SIGMOD Conference Companion 2023: 143-146 - [c42]Dominik Moritz, Behrooz Omidvar-Tehrani, Sudeepa Roy:
Seventh Workshop on Human-In-the-Loop Data Analytics (HILDA). SIGMOD Conference Companion 2023: 311-312 - [i31]Marco Morucci, Vittorio Orlandi, Harsh Parikh, Sudeepa Roy, Cynthia Rudin, Alexander Volfovsky:
A Double Machine Learning Approach to Combining Experimental and Observational Data. CoRR abs/2307.01449 (2023) - [i30]Shweta Patwa, Danyu Sun, Amir Gilad, Ashwin Machanavajjhala, Sudeepa Roy:
DP-PQD: Privately Detecting Per-Query Gaps In Synthetic Data Generated By Black-Box Mechanisms. CoRR abs/2309.08574 (2023) - 2022
- [j25]Sudeepa Roy, Jun Yang:
Letter from the Special Issue Editor. IEEE Data Eng. Bull. 45(3): 2-3 (2022) - [j24]Chenjie Li, Juseung Lee, Zhengjie Miao, Boris Glavic, Sudeepa Roy:
CaJaDE: Explaining Query Results by Augmenting Provenance with Context. Proc. VLDB Endow. 15(12): 3594-3597 (2022) - [j23]Sudeepa Roy:
Toward Interpretable and Actionable Data Analysis with Explanations and Causality. Proc. VLDB Endow. 15(12): 3812-3820 (2022) - [j22]Yuchao Tao, Amir Gilad, Ashwin Machanavajjhala, Sudeepa Roy:
DPXPlain: Privately Explaining Aggregate Query Answers. Proc. VLDB Endow. 16(1): 113-126 (2022) - [c41]Michael Bender, Michael Benedikt, Sudeepa Roy:
2022 ACM PODS Alberto O. Mendelzon Test-of-Time Award. PODS 2022: 103-104 - [c40]Sudeepa Roy, Babak Salimi:
Causal Inference in Data Analysis with Applications to Fairness and Explanations. RW 2022: 105-131 - [c39]Yihao Hu, Zhengjie Miao, Zhiming Leong, Haechan Lim, Zachary Zheng, Sudeepa Roy, Kristin Stephens-Martinez, Jun Yang:
I-Rex: An Interactive Relational Query Debugger for SQL. SIGCSE (2) 2022: 1180 - [c38]Amir Gilad, Zhengjie Miao, Sudeepa Roy, Jun Yang:
Understanding Queries by Conditional Instances. SIGMOD Conference 2022: 355-368 - [c37]Xiao Hu, Yuxi Liu, Haibo Xiu, Pankaj K. Agarwal, Debmalya Panigrahi, Sudeepa Roy, Jun Yang:
Selectivity Functions of Range Queries are Learnable. SIGMOD Conference 2022: 959-972 - [c36]Sainyam Galhotra, Amir Gilad, Sudeepa Roy, Babak Salimi:
HypeR: Hypothetical Reasoning With What-If and How-To Queries Using a Probabilistic Causal Approach. SIGMOD Conference 2022: 1598-1611 - [i29]Amir Gilad, Zhengjie Miao, Sudeepa Roy, Jun Yang:
Understanding Queries by Conditional Instances. CoRR abs/2202.11160 (2022) - [i28]Sainyam Galhotra, Amir Gilad, Sudeepa Roy, Babak Salimi:
HypeR: Hypothetical Reasoning With What-If and How-To Queries Using a Probabilistic Causal Approach. CoRR abs/2203.14692 (2022) - [i27]Yuchao Tao, Amir Gilad, Ashwin Machanavajjhala, Sudeepa Roy:
DPXPlain: Privately Explaining Aggregate Query Answers. CoRR abs/2209.01286 (2022) - 2021
- [j21]Boris Glavic, Alexandra Meliou, Sudeepa Roy:
Trends in Explanations: Understanding and Debugging Data-driven Systems. Found. Trends Databases 11(3): 226-318 (2021) - [j20]Tianyu Wang, Marco Morucci, M. Usaid Awan, Yameng Liu, Sudeepa Roy, Cynthia Rudin, Alexander Volfovsky:
FLAME: A Fast Large-scale Almost Matching Exactly Approach to Causal Inference. J. Mach. Learn. Res. 22: 31:1-31:41 (2021) - [c35]Chenjie Li, Zhengjie Miao, Qitian Zeng, Boris Glavic, Sudeepa Roy:
Putting Things into Context: Rich Explanations for Query Answers using Join Graphs. SIGMOD Conference 2021: 1051-1063 - [c34]Ester Livshits, Rina Kochirgan, Segev Tsur, Ihab F. Ilyas, Benny Kimelfeld, Sudeepa Roy:
Properties of Inconsistency Measures for Databases. SIGMOD Conference 2021: 1182-1194 - [i26]Neha R. Gupta, Vittorio Orlandi, Chia-Rui Chang, Tianyu Wang, Marco Morucci, Pritam Dey, Thomas J. Howell, Xian Sun, Angikar Ghosal, Sudeepa Roy, Cynthia Rudin, Alexander Volfovsky:
dame-flame: A Python Library Providing Fast Interpretable Matching for Causal Inference. CoRR abs/2101.01867 (2021) - [i25]Chenjie Li, Zhengjie Miao, Qitian Zeng, Boris Glavic, Sudeepa Roy:
Putting Things into Context: Rich Explanations for Query Answers using Join Graphs (extended version). CoRR abs/2103.15797 (2021) - [i24]Amir Gilad, Harsh Parikh, Babak Salimi, Sudeepa Roy:
Detecting Treatment Effect Modifiers in Social Networks. CoRR abs/2105.10591 (2021) - 2020
- [j19]Amir Gilad, Yihao Hu, Daniel Deutch, Sudeepa Roy:
MuSe: Multiple Deletion Semantics for Data Repair. Proc. VLDB Endow. 13(12): 2921-2924 (2020) - [j18]Zhengjie Miao, Tiangang Chen, Alexander Bendeck, Kevin Day, Sudeepa Roy, Jun Yang:
I-Rex: An Interactive Relational Query Explainer for SQL. Proc. VLDB Endow. 13(12): 2997-3000 (2020) - [j17]Xiao Hu, Shouzhuo Sun, Shweta Patwa, Debmalya Panigrahi, Sudeepa Roy:
Aggregated Deletion Propagation for Counting Conjunctive Query Answers. Proc. VLDB Endow. 14(2): 228-240 (2020) - [j16]Sihem Amer-Yahia, Senjuti Basu Roy, Lei Chen, Atsuyuki Morishima, James Abello Monedero, Pierre Bourhis, François Charoy, Marina Danilevsky, Gautam Das, Gianluca Demartini, Shady Elbassuoni, David Gross-Amblard, Emilie Hoareau, Munenari Inoguchi, Jared B. Kenworthy, Itaru Kitahara, Dongwon Lee, Yunyao Li, Ria Mae Borromeo, Paolo Papotti, H. Raghav Rao, Sudeepa Roy, Pierre Senellart, Keishi Tajima, Saravanan Thirumuruganathan, Marion Tommasi, Kazutoshi Umemoto, Andrea Wiggins, Koichiro Yoshida:
Making AI Machines Work for Humans in FoW. SIGMOD Rec. 49(2): 30-35 (2020) - [j15]Ester Livshits, Benny Kimelfeld, Sudeepa Roy:
Computing Optimal Repairs for Functional Dependencies. ACM Trans. Database Syst. 45(1): 4:1-4:46 (2020) - [c33]M. Usaid Awan, Marco Morucci, Vittorio Orlandi, Sudeepa Roy, Cynthia Rudin, Alexander Volfovsky:
Almost-Matching-Exactly for Treatment Effect Estimation under Network Interference. AISTATS 2020: 3252-3262 - [c32]Babak Salimi, Harsh Parikh, Moe Kayali, Lise Getoor, Sudeepa Roy, Dan Suciu:
Causal Relational Learning. SIGMOD Conference 2020: 241-256 - [c31]Yuchao Tao, Xi He, Ashwin Machanavajjhala, Sudeepa Roy:
Computing Local Sensitivities of Counting Queries with Joins. SIGMOD Conference 2020: 479-494 - [c30]Amir Gilad, Daniel Deutch, Sudeepa Roy:
On Multiple Semantics for Declarative Database Repairs. SIGMOD Conference 2020: 817-831 - [c29]Marco Morucci, Vittorio Orlandi, Sudeepa Roy, Cynthia Rudin, Alexander Volfovsky:
Adaptive Hyper-box Matching for Interpretable Individualized Treatment Effect Estimation. UAI 2020: 1089-1098 - [i23]M. Usaid Awan, Marco Morucci, Vittorio Orlandi, Sudeepa Roy, Cynthia Rudin, Alexander Volfovsky:
Almost-Matching-Exactly for Treatment Effect Estimation under Network Interference. CoRR abs/2003.00964 (2020) - [i22]Marco Morucci, Vittorio Orlandi, Sudeepa Roy, Cynthia Rudin, Alexander Volfovsky:
Adaptive Hyper-box Matching for Interpretable Individualized Treatment Effect Estimation. CoRR abs/2003.01805 (2020) - [i21]Babak Salimi, Harsh Parikh, Moe Kayali, Sudeepa Roy, Lise Getoor, Dan Suciu:
Causal Relational Learning. CoRR abs/2004.03644 (2020) - [i20]Yuchao Tao, Xi He, Ashwin Machanavajjhala, Sudeepa Roy:
Computing Local Sensitivities of Counting Queries with Joins. CoRR abs/2004.04656 (2020) - [i19]Amir Gilad, Daniel Deutch, Sudeepa Roy:
On Multiple Semantics for Declarative Database Repairs. CoRR abs/2004.05065 (2020) - [i18]Xiao Hu, Shouzhuo Sun, Shweta Patwa, Debmalya Panigrahi, Sudeepa Roy:
Aggregated Deletion Propagation for Counting Conjunctive Query Answers. CoRR abs/2010.08694 (2020)
2010 – 2019
- 2019
- [j14]Ria Mae Borromeo, Lei Chen, Abhishek Dubey, Sudeepa Roy, Saravanan Thirumuruganathan:
On Benchmarking for Crowdsourcing and Future of Work Platforms. IEEE Data Eng. Bull. 42(4): 46-54 (2019) - [j13]Zhengjie Miao, Qitian Zeng, Chenjie Li, Boris Glavic, Oliver Kennedy, Sudeepa Roy:
CAPE: Explaining Outliers by Counterbalancing. Proc. VLDB Endow. 12(12): 1806-1809 (2019) - [j12]Zhengjie Miao, Andrew Lee, Sudeepa Roy:
LensXPlain: Visualizing and Explaining Contributing Subsets for Aggregate Query Answers. Proc. VLDB Endow. 12(12): 1898-1901 (2019) - [j11]Theodoros Rekatsinas, Sudeepa Roy, Manasi Vartak, Ce Zhang, Neoklis Polyzotis:
Opportunities for Data Management Research in the Era of Horizontal AI/ML. Proc. VLDB Endow. 12(12): 2323-2324 (2019) - [j10]Brett Walenz, Stavros Sintos, Sudeepa Roy, Jun Yang:
Learning to Sample: Counting with Complex Queries. Proc. VLDB Endow. 13(3): 390-402 (2019) - [c28]Awa Dieng, Yameng Liu, Sudeepa Roy, Cynthia Rudin, Alexander Volfovsky:
Interpretable Almost-Exact Matching for Causal Inference. AISTATS 2019: 2445-2453 - [c27]Zhengjie Miao, Qitian Zeng, Boris Glavic, Sudeepa Roy:
Going Beyond Provenance: Explaining Query Answers with Pattern-based Counterbalances. SIGMOD Conference 2019: 485-502 - [c26]Zhengjie Miao, Sudeepa Roy, Jun Yang:
Explaining Wrong Queries Using Small Examples. SIGMOD Conference 2019: 503-520 - [c25]Prajakta Kalmegh, Shivnath Babu, Sudeepa Roy:
iQCAR: inter-Query Contention Analyzer for Data Analytics Frameworks. SIGMOD Conference 2019: 918-935 - [c24]Zhengjie Miao, Sudeepa Roy, Jun Yang:
RATest: Explaining Wrong Relational Queries Using Small Examples. SIGMOD Conference 2019: 1961-1964 - [c23]M. Usaid Awan, Yameng Liu, Marco Morucci, Sudeepa Roy, Cynthia Rudin, Alexander Volfovsky:
Interpretable Almost Matching Exactly With Instrumental Variables. UAI 2019: 1116-1126 - [e1]Thomas Moyer, Sudeepa Roy:
11th International Workshop on Theory and Practice of Provenance, TaPP 2019, Philadelphia, PA, USA, June 3, 2019. USENIX Association 2019 [contents] - [i17]Zhengjie Miao, Sudeepa Roy, Jun Yang:
Explaining Wrong Queries Using Small Examples. CoRR abs/1904.04467 (2019) - [i16]Ester Livshits, Ihab F. Ilyas, Benny Kimelfeld, Sudeepa Roy:
Principles of Progress Indicators for Database Repairing. CoRR abs/1904.06492 (2019) - [i15]Brett Walenz, Stavros Sintos, Sudeepa Roy, Jun Yang:
Learning to Sample: Counting with Complex Queries. CoRR abs/1906.09335 (2019) - [i14]M. Usaid Awan, Yameng Liu, Marco Morucci, Sudeepa Roy, Cynthia Rudin, Alexander Volfovsky:
Interpretable Almost-Matching-Exactly With Instrumental Variables. CoRR abs/1906.11658 (2019) - [i13]Debmalya Panigrahi, Shweta Patwa, Sudeepa Roy:
Generalized Deletion Propagation on Counting Conjunctive Query Answers. CoRR abs/1907.10125 (2019) - 2018
- [j9]Jun Yang, Pankaj K. Agarwal, Sudeepa Roy, Brett Walenz, You Wu, Cong Yu, Chengkai Li:
Query Perturbation Analysis: An Adventure of Database Researchers in Fact-Checking. IEEE Data Eng. Bull. 41(3): 28-42 (2018) - [j8]Yuhao Wen, Xiaodan Zhu, Sudeepa Roy, Jun Yang:
Interactive Summarization and Exploration of Top Aggregate Query Answers. Proc. VLDB Endow. 11(13): 2196-2208 (2018) - [c22]Prajakta Kalmegh, Shivnath Babu, Sudeepa Roy:
iQCAR: Inter-Query Contention Analyzer. SoCC 2018: 532 - [c21]Ester Livshits, Benny Kimelfeld, Sudeepa Roy:
Computing Optimal Repairs for Functional Dependencies. PODS 2018: 225-237 - [c20]Yuhao Wen, Xiaodan Zhu, Sudeepa Roy, Jun Yang:
QAGView: Interactively Summarizing High-Valued Aggregate Query Answers. SIGMOD Conference 2018: 1709-1712 - [c19]Prajakta Kalmegh, Harrison Lundberg, Frederick Xu, Shivnath Babu, Sudeepa Roy:
iQCAR: A Demonstration of an Inter-Query Contention Analyzer for Cluster Computing Frameworks. SIGMOD Conference 2018: 1721-1724 - [r2]Susan B. Davidson, Sudeepa Roy:
Provenance: Privacy and Security. Encyclopedia of Database Systems (2nd ed.) 2018 - [r1]Sudeepa Roy:
Uncertain Data Lineage. Encyclopedia of Database Systems (2nd ed.) 2018 - [i12]Awa Dieng, Yameng Liu, Sudeepa Roy, Cynthia Rudin, Alexander Volfovsky:
Collapsing-Fast-Large-Almost-Matching-Exactly: A Matching Method for Causal Inference. CoRR abs/1806.06802 (2018) - [i11]Yuhao Wen, Xiaodan Zhu, Sudeepa Roy, Jun Yang:
Interactive Summarization and Exploration of Top Aggregate Query Answers. CoRR abs/1807.11634 (2018) - 2017
- [j7]Paraschos Koutris, Tova Milo, Sudeepa Roy, Dan Suciu:
Answering Conjunctive Queries with Inequalities. Theory Comput. Syst. 61(1): 2-30 (2017) - [j6]Paul Beame, Jerry Li, Sudeepa Roy, Dan Suciu:
Exact Model Counting of Query Expressions: Limitations of Propositional Methods. ACM Trans. Database Syst. 42(1): 1:1-1:46 (2017) - [c18]Brett Walenz, Sudeepa Roy, Jun Yang:
Optimizing Iceberg Queries with Complex Joins. SIGMOD Conference 2017: 1243-1258 - [i10]Sudeepa Roy, Cynthia Rudin, Alexander Volfovsky, Tianyu Wang:
FLAME: A Fast Large-scale Almost Matching Exactly Approach to Causal Inference. CoRR abs/1707.06315 (2017) - [i9]Sudeepa Roy, Babak Salimi:
A Framework for Inferring Causality from Multi-Relational Observational Data using Conditional Independence. CoRR abs/1708.02536 (2017) - [i8]Prajakta Kalmegh, Shivnath Babu, Sudeepa Roy:
Analyzing Query Performance and Attributing Blame for Contentions in a Cluster Computing Framework. CoRR abs/1708.08435 (2017) - [i7]Ester Livshits, Benny Kimelfeld, Sudeepa Roy:
Computing Optimal Repairs for Functional Dependencies. CoRR abs/1712.07705 (2017) - 2015
- [j5]Benoît Groz, Tova Milo, Sudeepa Roy:
On the Complexity of Evaluating Order Queries with the Crowd. IEEE Data Eng. Bull. 38(3): 44-58 (2015) - [j4]Sudeepa Roy, Laurel J. Orr, Dan Suciu:
Explaining Query Answers with Explanation-Ready Databases. Proc. VLDB Endow. 9(4): 348-359 (2015) - [c17]Paraschos Koutris, Tova Milo, Sudeepa Roy, Dan Suciu:
Answering Conjunctive Queries with Inequalities. ICDT 2015: 76-93 - 2014
- [j3]Alexandra Meliou, Sudeepa Roy, Dan Suciu:
Causality and Explanations in Databases. Proc. VLDB Endow. 7(13): 1715-1716 (2014) - [j2]Susan B. Davidson, Sanjeev Khanna, Tova Milo, Sudeepa Roy:
Top-k and Clustering with Noisy Comparisons. ACM Trans. Database Syst. 39(4): 35:1-35:39 (2014) - [c16]Paul Beame, Jerry Li, Sudeepa Roy, Dan Suciu:
Counting of Query Expressions: Limitations of Propositional Methods. ICDT 2014: 177-188 - [c15]Daniel Deutch, Tova Milo, Sudeepa Roy, Val Tannen:
Circuits for Datalog Provenance. ICDT 2014: 201-212 - [c14]Sudeepa Roy, Dan Suciu:
A formal approach to finding explanations for database queries. SIGMOD Conference 2014: 1579-1590 - [i6]Paraschos Koutris, Tova Milo, Sudeepa Roy, Dan Suciu:
Answering Conjunctive Queries with Inequalities. CoRR abs/1412.3869 (2014) - 2013
- [c13]Susan B. Davidson, Tova Milo, Sudeepa Roy:
A propagation model for provenance views of public/private workflows. ICDT 2013: 165-176 - [c12]Susan B. Davidson, Sanjeev Khanna, Tova Milo, Sudeepa Roy:
Using the crowd for top-k and group-by queries. ICDT 2013: 225-236 - [c11]Sudeepa Roy, Laura Chiticariu, Vitaly Feldman, Frederick Reiss, Huaiyu Zhu:
Provenance-based dictionary refinement in information extraction. SIGMOD Conference 2013: 457-468 - [c10]Paul Beame, Jerry Li, Sudeepa Roy, Dan Suciu:
Lower Bounds for Exact Model Counting and Applications in Probabilistic Databases. UAI 2013 - [i5]Paul Beame, Jerry Li, Sudeepa Roy, Dan Suciu:
Lower Bounds for Exact Model Counting and Applications in Probabilistic Databases. CoRR abs/1309.6815 (2013) - [i4]Paul Beame, Jerry Li, Sudeepa Roy, Dan Suciu:
Model Counting of Query Expressions: Limitations of Propositional Methods. CoRR abs/1312.4125 (2013) - 2012
- [i3]Susan B. Davidson, Tova Milo, Sudeepa Roy:
A Propagation Model for Provenance Views of Public/Private Workflows. CoRR abs/1212.2251 (2012) - 2011
- [j1]Sanjeev Khanna, Sudeepa Roy, Val Tannen:
Queries with Difference on Probabilistic Databases. Proc. VLDB Endow. 4(11): 1051-1062 (2011) - [c9]Susan B. Davidson, Sanjeev Khanna, Val Tannen, Sudeepa Roy, Yi Chen, Tova Milo, Julia Stoyanovich:
Enabling Privacy in Provenance-Aware Workflow Systems. CIDR 2011: 215-218 - [c8]Susan B. Davidson, Zhuowei Bao, Sudeepa Roy:
Hiding Data and Structure in Workflow Provenance. DNIS 2011: 41-48 - [c7]Susan B. Davidson, Sanjeev Khanna, Sudeepa Roy, Julia Stoyanovich, Val Tannen, Yi Chen:
On provenance and privacy. ICDT 2011: 3-10 - [c6]Sudeepa Roy, Vittorio Perduca, Val Tannen:
Faster query answering in probabilistic databases using read-once functions. ICDT 2011: 232-243 - [c5]Susan B. Davidson, Sanjeev Khanna, Tova Milo, Debmalya Panigrahi, Sudeepa Roy:
Provenance views for module privacy. PODS 2011: 175-186 - 2010
- [c4]Zhuowei Bao, Susan B. Davidson, Sanjeev Khanna, Sudeepa Roy:
An optimal labeling scheme for workflow provenance using skeleton labels. SIGMOD Conference 2010: 711-722 - [i2]Susan B. Davidson, Sanjeev Khanna, Debmalya Panigrahi, Sudeepa Roy:
Preserving Module Privacy in Workflow Provenance. CoRR abs/1005.5543 (2010) - [i1]Sudeepa Roy, Vittorio Perduca, Val Tannen:
Faster Query Answering in Probabilistic Databases using Read-Once Functions. CoRR abs/1012.0335 (2010)
2000 – 2009
- 2009
- [c3]Olivier Biton, Susan B. Davidson, Sanjeev Khanna, Sudeepa Roy:
Optimizing user views for workflows. ICDT 2009: 310-323 - 2008
- [c2]Sampath Kannan, Sanjeev Khanna, Sudeepa Roy:
STCON in Directed Unique-Path Graphs. FSTTCS 2008: 256-267 - 2006
- [c1]B. Meenakshi, Abhishek Bhatnagar, Sudeepa Roy:
Tool for Translating Simulink Models into Input Language of a Model Checker. ICFEM 2006: 606-620
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-27 21:21 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint