default search action
Raúl Santos-Rodríguez
Person information
- affiliation: University of Bristol
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c62]Weisong Yang, Rafael Poyiadzi, Niall Twomey, Raúl Santos-Rodríguez:
Hypothesis Testing for Class-Conditional Noise Using Local Maximum Likelihood. AAAI 2024: 21744-21752 - [c61]Matthew Clifford, Jonathan Erskine, Alexander Hepburn, Raúl Santos-Rodríguez, Dario García-García:
Learning Confidence Bounds for Classification with Imbalanced Data. ECAI 2024: 1776-1783 - [c60]Jonathan Erskine, Matthew Clifford, Alexander Hepburn, Raúl Santos-Rodríguez:
An Interactive Human-Machine Learning Interface for Collecting and Learning from Complex Annotations. IJCAI 2024: 8644-8647 - [c59]Amarpal Sahota, Amber Roguski, Matthew W. Jones, Zahraa S. Abdallah, Raúl Santos-Rodríguez:
Investigating Brain Connectivity and Regional Statistics from EEG for Early Stage Parkinson's Classification. MLSP 2024: 1-6 - [c58]Jeffrey Nicholas Clark, Edward Alexander Small, Nawid Keshtmand, Michelle Wing Lam Wan, Elena Fillola Mayoral, Enrico Werner, Christopher P. Bourdeaux, Raúl Santos-Rodríguez:
TraCE: Trajectory Counterfactual Explanation Scores. NLDL 2024: 36-45 - [c57]Nawid Keshtmand, Raúl Santos-Rodríguez, Jonathan Lawry:
Typicality-based point OOD detection with contrastive learning. NLDL 2024: 120-129 - [i66]Alexander Hepburn, Raúl Santos-Rodriguez, Javier Portilla:
Evaluating Perceptual Distances by Fitting Binomial Distributions to Two-Alternative Forced Choice Data. CoRR abs/2403.10390 (2024) - [i65]Taku Yamagata, Raúl Santos-Rodríguez:
Safe and Robust Reinforcement Learning: Principles and Practice. CoRR abs/2403.18539 (2024) - [i64]Jonathan Erskine, Matthew Clifford, Alexander Hepburn, Raúl Santos-Rodríguez:
An Interactive Human-Machine Learning Interface for Collecting and Learning from Complex Annotations. CoRR abs/2403.19339 (2024) - [i63]Thea Barnes, Enrico Werner, Jeffrey N. Clark, Raúl Santos-Rodríguez:
Towards Personalised Patient Risk Prediction Using Temporal Hospital Data Trajectories. CoRR abs/2407.09373 (2024) - [i62]Matthew Clifford, Jonathan Erskine, Alexander Hepburn, Raúl Santos-Rodríguez, Dario García-García:
Learning Confidence Bounds for Classification with Imbalanced Data. CoRR abs/2407.11878 (2024) - [i61]Amarpal Sahota, Amber Roguski, Matthew W. Jones, Zahraa S. Abdallah, Raúl Santos-Rodríguez:
Investigating Brain Connectivity and Regional Statistics from EEG for early stage Parkinson's Classification. CoRR abs/2408.00711 (2024) - [i60]Yuxuan Ye, Edwin Simpson, Raúl Santos-Rodríguez:
Using Similarity to Evaluate Factual Consistency in Summaries. CoRR abs/2409.15090 (2024) - [i59]Tashi Namgyal, Alexander Hepburn, Raúl Santos-Rodríguez, Valero Laparra, Jesus Malo:
The Effect of Perceptual Metrics on Music Representation Learning for Genre Classification. CoRR abs/2409.17069 (2024) - [i58]Lincen Bai, Hedi Tabia, Raúl Santos-Rodríguez:
Beyond Pruning Criteria: The Dominant Role of Fine-Tuning and Adaptive Ratios in Neural Network Robustness. CoRR abs/2410.15176 (2024) - [i57]Marceli Wac, Raúl Santos-Rodríguez, Christopher J. McWilliams, Christopher P. Bourdeaux:
Evaluation of a Data Annotation Platform for Large, Time-Series Datasets in Intensive Care: Mixed Methods Study. CoRR abs/2410.16959 (2024) - 2023
- [j22]Katarzyna Stawarz, Dmitri S. Katz, Amid Ayobi, Paul Marshall, Taku Yamagata, Raúl Santos-Rodríguez, Peter A. Flach, Aisling Ann O'Kane:
Co-designing opportunities for Human-Centred Machine Learning in supporting Type 1 diabetes decision-making. Int. J. Hum. Comput. Stud. 173: 103003 (2023) - [j21]Haixia Bi, Miquel Perelló-Nieto, Raúl Santos-Rodríguez, Peter A. Flach, Ian Craddock:
An active semi-supervised deep learning model for human activity recognition. J. Ambient Intell. Humaniz. Comput. 14(10): 13049-13065 (2023) - [j20]Telmo de Menezes e Silva Filho, Hao Song, Miquel Perelló-Nieto, Raúl Santos-Rodríguez, Meelis Kull, Peter A. Flach:
Classifier calibration: a survey on how to assess and improve predicted class probabilities. Mach. Learn. 112(9): 3211-3260 (2023) - [j19]Marceli Wac, Raúl Santos-Rodríguez, Christopher J. McWilliams, Christopher P. Bourdeaux:
CATS: Cloud-native time-series data annotation tool for intensive care. SoftwareX 24: 101593 (2023) - [c56]Matthew Clifford, Jonathan Erskine, Alexander Hepburn, Peter A. Flach, Raúl Santos-Rodríguez:
Reconciling Training and Evaluation Objectives in Location Agnostic Surrogate Explainers. CIKM 2023: 3833-3837 - [c55]Taku Yamagata, Ahmed Khalil, Raúl Santos-Rodríguez:
Q-learning Decision Transformer: Leveraging Dynamic Programming for Conditional Sequence Modelling in Offline RL. ICML 2023: 38989-39007 - [c54]Jonathan D. Thomas, Raúl Santos-Rodríguez, Mihai Anca, Robert J. Piechocki:
Multi-lingual agents through multi-headed neural networks. NLDL 2023 - [c53]Taku Yamagata, Emma L. Tonkin, Benjamin Arana Sanchez, Ian Craddock, Miquel Perelló-Nieto, Raúl Santos-Rodríguez, Weisong Yang, Peter A. Flach:
When the Ground Truth is not True: Modelling Human Biases in Temporal Annotations. PerCom Workshops 2023: 527-533 - [i56]Enrico Werner, Jeffrey N. Clark, Ranjeet S. Bhamber, Michael Ambler, Christopher P. Bourdeaux, Alexander Hepburn, Christopher J. McWilliams, Raúl Santos-Rodríguez:
Identification, explanation and clinical evaluation of hospital patient subtypes. CoRR abs/2301.08019 (2023) - [i55]Amarpal Sahota, Amber Roguski, Matthew W. Jones, Michal Rolinski, Alan L. Whone, Raúl Santos-Rodriguez, Zahraa S. Abdallah:
A Time Series Approach to Parkinson's Disease Classification from EEG. CoRR abs/2301.09568 (2023) - [i54]Maha M. Alwuthaynani, Zahraa S. Abdallah, Raúl Santos-Rodríguez:
Transfer Learning and Class Decomposition for Detecting the Cognitive Decline of Alzheimer Disease. CoRR abs/2301.13504 (2023) - [i53]Taku Yamagata, Emma L. Tonkin, Benjamin Arana Sanchez, Ian Craddock, Miquel Perelló-Nieto, Raúl Santos-Rodríguez, Weisong Yang, Peter A. Flach:
When the Ground Truth is not True: Modelling Human Biases in Temporal Annotations. CoRR abs/2302.02706 (2023) - [i52]Nawid Keshtmand, Raúl Santos-Rodríguez, Jonathan Lawry:
Two-step counterfactual generation for OOD examples. CoRR abs/2302.05196 (2023) - [i51]Alexander Hepburn, Valero Laparra, Raúl Santos-Rodríguez, Jesús Malo:
Disentangling the Link Between Image Statistics and Human Perception. CoRR abs/2303.09874 (2023) - [i50]Tashi Namgyal, Alexander Hepburn, Raúl Santos-Rodríguez, Valero Laparra, Jesus Malo:
What You Hear Is What You See: Audio Quality Metrics From Image Quality Metrics. CoRR abs/2305.11582 (2023) - [i49]Tashi Namgyal, Peter A. Flach, Raúl Santos-Rodríguez:
MIDI-Draw: Sketching to Control Melody Generation. CoRR abs/2305.11605 (2023) - [i48]Alex Iacob, Pedro Porto Buarque de Gusmão, Nicholas D. Lane, Armand K. Koupai, Mohammud Junaid Bocus, Raúl Santos-Rodríguez, Robert J. Piechocki, Ryan McConville:
Privacy in Multimodal Federated Human Activity Recognition. CoRR abs/2305.12134 (2023) - [i47]Marceli Wac, Raúl Santos-Rodriguez, Christopher J. McWilliams, Christopher P. Bourdeaux:
Strategies for engaging clinical participants in the co-design of software for healthcare domains. CoRR abs/2308.16631 (2023) - [i46]Edward A. Small, Jeffrey N. Clark, Christopher J. McWilliams, Kacper Sokol, Jeffrey Chan, Flora D. Salim, Raúl Santos-Rodríguez:
Counterfactual Explanations via Locally-guided Sequential Algorithmic Recourse. CoRR abs/2309.04211 (2023) - [i45]Jeffrey N. Clark, Edward A. Small, Nawid Keshtmand, Michelle W. L. Wan, Elena Fillola Mayoral, Enrico Werner, Christopher P. Bourdeaux, Raúl Santos-Rodriguez:
TraCE: Trajectory Counterfactual Explanation Scores. CoRR abs/2309.15965 (2023) - [i44]Marceli Wac, Raúl Santos-Rodríguez, Christopher J. McWilliams, Christopher P. Bourdeaux:
Capturing Requirements for a Data Annotation Tool for Intensive Care: Experimental User-Centered Design Study. CoRR abs/2309.16500 (2023) - [i43]Ahmed Khalil, Robert J. Piechocki, Raúl Santos-Rodríguez:
LL-VQ-VAE: Learnable Lattice Vector-Quantization For Efficient Representations. CoRR abs/2310.09382 (2023) - [i42]Tashi Namgyal, Alexander Hepburn, Raúl Santos-Rodríguez, Valero Laparra, Jesus Malo:
Data is Overrated: Perceptual Metrics Can Lead Learning in the Absence of Training Data. CoRR abs/2312.03455 (2023) - [i41]Michelle W. L. Wan, Jeffrey N. Clark, Edward A. Small, Elena Fillola Mayoral, Raúl Santos-Rodríguez:
Monitoring Sustainable Global Development Along Shared Socioeconomic Pathways. CoRR abs/2312.04416 (2023) - [i40]Weisong Yang, Rafael Poyiadzi, Niall Twomey, Raúl Santos-Rodríguez:
Hypothesis Testing for Class-Conditional Noise Using Local Maximum Likelihood. CoRR abs/2312.10238 (2023) - 2022
- [j18]Xiaoyang Wang, Jonathan D. Thomas, Robert J. Piechocki, Shipra Kapoor, Raúl Santos-Rodríguez, Arjun Parekh:
Self-play learning strategies for resource assignment in Open-RAN networks. Comput. Networks 206: 108682 (2022) - [j17]Armand K. Koupai, Mohammud Junaid Bocus, Raúl Santos-Rodríguez, Robert J. Piechocki, Ryan McConville:
Self-supervised multimodal fusion transformer for passive activity recognition. IET Wirel. Sens. Syst. 12(5-6): 149-160 (2022) - [j16]Kacper Sokol, Raúl Santos-Rodríguez, Peter A. Flach:
FAT Forensics: A Python toolbox for algorithmic fairness, accountability and transparency. Softw. Impacts 14: 100406 (2022) - [c52]Ricardo Kleinlein, Alexander Hepburn, Raúl Santos-Rodríguez, Fernando Fernández Martínez:
Sampling Based On Natural Image Statistics Improves Local Surrogate Explainers. BMVC 2022: 1083 - [c51]Mohammud Junaid Bocus, Hok-Shing Lau, Ryan McConville, Robert J. Piechocki, Raúl Santos-Rodríguez:
Self-Supervised WiFi-Based Activity Recognition. GLOBECOM (Workshops) 2022: 552-557 - [c50]Taku Yamagata, Raúl Santos-Rodríguez, Robert J. Piechocki, Peter A. Flach:
Understanding Reinforcement Learning Based Localisation as a Probabilistic Inference Algorithm. ICANN (2) 2022: 111-122 - [c49]Jonas Paulavicius, Seifallah Jardak, Ryan McConville, Robert J. Piechocki, Raúl Santos-Rodríguez:
Temporal Self-Supervised Learning for RSSI-based Indoor Localization. ICC 2022: 3046-3051 - [c48]Alexander Hepburn, Valero Laparra, Raúl Santos-Rodríguez, Johannes Ballé, Jesus Malo:
On the relation between statistical learning and perceptual distances. ICLR 2022 - [c47]Nawid Keshtmand, Raúl Santos-Rodríguez, Jonathan Lawry:
Understanding the Properties and Limitations of Contrastive Learning for Out-of-Distribution Detection. ICPR Workshops (1) 2022: 330-343 - [c46]Jonas Schulz, Raúl Santos-Rodríguez, Rafael Poyiadzi:
Uncertainty Quantification of Surrogate Explanations: an Ordinal Consensus Approach. NLDL 2022 - [c45]Rafael Poyiadzi, Daniel Bacaicoa-Barber, Jesús Cid-Sueiro, Miquel Perelló-Nieto, Peter A. Flach, Raúl Santos-Rodríguez:
The Weak Supervision Landscape. PerCom Workshops 2022: 218-223 - [c44]Rafael Poyiadzi, Weisong Yang, Niall Twomey, Raúl Santos-Rodríguez:
Hypothesis Testing for Class-Conditional Label Noise. ECML/PKDD (3) 2022: 171-186 - [p1]Weisong Yang, Rafael Poyiadzi, Yoav Ben-Shlomo, Ian Craddock, Liz Coulthard, Raúl Santos-Rodríguez, James Selwood, Niall Twomey:
Detecting and Monitoring Behavioural Patterns in Individuals with Cognitive Disorders in the Home Environment with Partial Annotations. Integrating Artificial Intelligence and IoT for Advanced Health Informatics 2022: 25-52 - [d2]Kacper Sokol, Alexander Hepburn, Raúl Santos-Rodriguez, Peter A. Flach:
What and How of Machine Learning Transparency: Building Bespoke Explainability Tools with Interoperable Algorithmic Components. Zenodo, 2022 - [i39]Rafael Poyiadzi, Daniel Bacaicoa-Barber, Jesús Cid-Sueiro, Miquel Perelló-Nieto, Peter A. Flach, Raúl Santos-Rodríguez:
The Weak Supervision Landscape. CoRR abs/2203.16282 (2022) - [i38]Ricardo Kleinlein, Alexander Hepburn, Raúl Santos-Rodríguez, Fernando Fernández Martínez:
Sampling Based On Natural Image Statistics Improves Local Surrogate Explainers. CoRR abs/2208.03961 (2022) - [i37]Armand K. Koupai, Mohammud Junaid Bocus, Raúl Santos-Rodríguez, Robert J. Piechocki, Ryan McConville:
Self-Supervised Multimodal Fusion Transformer for Passive Activity Recognition. CoRR abs/2209.03765 (2022) - [i36]Kacper Sokol, Alexander Hepburn, Rafael Poyiadzi, Matthew Clifford, Raúl Santos-Rodríguez, Peter A. Flach:
FAT Forensics: A Python Toolbox for Implementing and Deploying Fairness, Accountability and Transparency Algorithms in Predictive Systems. CoRR abs/2209.03805 (2022) - [i35]Kacper Sokol, Alexander Hepburn, Raúl Santos-Rodríguez, Peter A. Flach:
What and How of Machine Learning Transparency: Building Bespoke Explainability Tools with Interoperable Algorithmic Components. CoRR abs/2209.03813 (2022) - [i34]Taku Yamagata, Ahmed Khalil, Raúl Santos-Rodríguez:
Q-learning Decision Transformer: Leveraging Dynamic Programming for Conditional Sequence Modelling in Offline RL. CoRR abs/2209.03993 (2022) - [i33]Nawid Keshtmand, Raúl Santos-Rodríguez, Jonathan Lawry:
Understanding the properties and limitations of contrastive learning for Out-of-Distribution detection. CoRR abs/2211.03183 (2022) - 2021
- [j15]Ryan McConville, Gareth Archer, Ian Craddock, Michal Kozlowski, Robert J. Piechocki, James Pope, Raúl Santos-Rodríguez:
Vesta: A digital health analytics platform for a smart home in a box. Future Gener. Comput. Syst. 114: 106-119 (2021) - [j14]Bo Kang, Dario García-García, Jefrey Lijffijt, Raúl Santos-Rodríguez, Tijl De Bie:
Conditional t-SNE: more informative t-SNE embeddings. Mach. Learn. 110(10): 2905-2940 (2021) - [j13]Amid Ayobi, Katarzyna Stawarz, Dmitri S. Katz, Paul Marshall, Taku Yamagata, Raúl Santos-Rodríguez, Peter A. Flach, Aisling Ann O'Kane:
Co-Designing Personal Health? Multidisciplinary Benefits and Challenges in Informing Diabetes Self-Care Technologies. Proc. ACM Hum. Comput. Interact. 5(CSCW2): 457:1-457:26 (2021) - [j12]Haixia Bi, Miquel Perelló-Nieto, Raúl Santos-Rodríguez, Peter A. Flach:
Human Activity Recognition Based on Dynamic Active Learning. IEEE J. Biomed. Health Informatics 25(4): 922-934 (2021) - [c43]Bo Kang, Dario García-García, Jefrey Lijffijt, Raúl Santos-Rodríguez, Tijl De Bie:
Conditional t-SNE: More informative t-SNE embeddings. DSAA 2021: 1-2 - [c42]Daniel Bacaicoa-Barber, Miquel Perelló-Nieto, Raúl Santos-Rodríguez, Jesús Cid-Sueiro:
On the Selection of Loss Functions Under Known Weak Label Models. ICANN (2) 2021: 332-343 - [c41]Alexander Hepburn, Raúl Santos-Rodríguez:
Explainers in the Wild: Making Surrogate Explainers Robust to Distortions Through Perception. ICIP 2021: 3717-3721 - [c40]Amid Ayobi, Katarzyna Stawarz, Dmitri S. Katz, Paul Marshall, Taku Yamagata, Raúl Santos-Rodríguez, Peter A. Flach, Aisling Ann O'Kane:
Machine Learning Explanations as Boundary Objects: How AI Researchers Explain and Non-Experts Perceive Machine Learning. IUI Workshops 2021 - [c39]Raúl Santos-Rodriguez:
Keynote: Training with imperfect and weak labels. PerCom Workshops 2021: 481 - [i32]Alexander Hepburn, Raúl Santos-Rodríguez:
Explainers in the Wild: Making Surrogate Explainers Robust to Distortions through Perception. CoRR abs/2102.10951 (2021) - [i31]Rafael Poyiadzi, Weisong Yang, Niall Twomey, Raúl Santos-Rodríguez:
Statistical Hypothesis Testing for Class-Conditional Label Noise. CoRR abs/2103.02630 (2021) - [i30]Xiaoyang Wang, Jonathan D. Thomas, Robert J. Piechocki, Shipra Kapoor, Raúl Santos-Rodríguez, Arjun Parekh:
Self-play Learning Strategies for Resource Assignment in Open-RAN Networks. CoRR abs/2103.02649 (2021) - [i29]Hok-Shing Lau, Ryan McConville, Mohammud Junaid Bocus, Robert J. Piechocki, Raúl Santos-Rodríguez:
Self-Supervised WiFi-Based Activity Recognition. CoRR abs/2104.09072 (2021) - [i28]Alexander Hepburn, Valero Laparra, Raúl Santos-Rodríguez, Johannes Ballé, Jesús Malo:
On the relation between statistical learning and perceptual distances. CoRR abs/2106.04427 (2021) - [i27]Rafael Poyiadzi, Xavier Renard, Thibault Laugel, Raúl Santos-Rodríguez, Marcin Detyniecki:
On the overlooked issue of defining explanation objectives for local-surrogate explainers. CoRR abs/2106.05810 (2021) - [i26]Rafael Poyiadzi, Xavier Renard, Thibault Laugel, Raúl Santos-Rodríguez, Marcin Detyniecki:
Understanding surrogate explanations: the interplay between complexity, fidelity and coverage. CoRR abs/2107.04309 (2021) - [i25]Taku Yamagata, Ryan McConville, Raúl Santos-Rodríguez:
Reinforcement Learning with Feedback from Multiple Humans with Diverse Skills. CoRR abs/2111.08596 (2021) - [i24]Jonas Schulz, Rafael Poyiadzi, Raúl Santos-Rodríguez:
Uncertainty Quantification of Surrogate Explanations: an Ordinal Consensus Approach. CoRR abs/2111.09121 (2021) - [i23]Jonathan D. Thomas, Raúl Santos-Rodríguez, Robert J. Piechocki, Mihai Anca:
Multi-lingual agents through multi-headed neural networks. CoRR abs/2111.11129 (2021) - [i22]Telmo de Menezes e Silva Filho, Hao Song, Miquel Perelló-Nieto, Raúl Santos-Rodríguez, Meelis Kull, Peter A. Flach:
Classifier Calibration: How to assess and improve predicted class probabilities: a survey. CoRR abs/2112.10327 (2021) - 2020
- [j11]Miquel Perelló-Nieto, Raúl Santos-Rodríguez, Dario García-García, Jesús Cid-Sueiro:
Recycling weak labels for multiclass classification. Neurocomputing 400: 206-215 (2020) - [j10]Kacper Sokol, Alexander Hepburn, Rafael Poyiadzi, Matthew Clifford, Raúl Santos-Rodríguez, Peter A. Flach:
FAT Forensics: A Python Toolbox for Implementing and Deploying Fairness, Accountability and Transparency Algorithms in Predictive Systems. J. Open Source Softw. 5(49): 1904 (2020) - [c38]Rafael Poyiadzi, Kacper Sokol, Raúl Santos-Rodríguez, Tijl De Bie, Peter A. Flach:
FACE: Feasible and Actionable Counterfactual Explanations. AIES 2020: 344-350 - [c37]Rafael Poyiadzi, Weisong Yang, Yoav Ben-Shlomo, Ian Craddock, Liz Coulthard, Raúl Santos-Rodríguez, James Selwood, Niall Twomey:
Detecting Signatures of Early-stage Dementia with Behavioural Models Derived from Sensor Data. AAI4H@ECAI 2020: 23-27 - [c36]Taku Yamagata, Aisling Ann O'Kane, Amid Ayobi, Dmitri S. Katz, Katarzyna Stawarz, Paul Marshall, Peter A. Flach, Raúl Santos-Rodríguez:
Model-Based Reinforcement Learning for Type 1 Diabetes Blood Glucose Control. AAI4H@ECAI 2020: 72-77 - [c35]Niall Twomey, Michal Kozlowski, Raúl Santos-Rodríguez:
Neural ODEs with Stochastic Vector Field Mixtures. ECAI 2020: 1555-1562 - [c34]Mohammud Junaid Bocus, Jonas Paulavicius, Ryan McConville, Raúl Santos-Rodríguez, Robert J. Piechocki:
Low Cost Localisation in Residential Environments using High Resolution CIR Information. GLOBECOM 2020: 1-6 - [c33]Alexander Hepburn, Valero Laparra, Jesús Malo, Ryan McConville, Raúl Santos-Rodríguez:
Perceptnet: A Human Visual System Inspired Neural Network For Estimating Perceptual Distance. ICIP 2020: 121-125 - [c32]Ryan McConville, Raúl Santos-Rodríguez, Robert J. Piechocki, Ian Craddock:
N2D: (Not Too) Deep Clustering via Clustering the Local Manifold of an Autoencoded Embedding. ICPR 2020: 5145-5152 - [c31]Mohammud Junaid Bocus, Wenda Li, Jonas Paulavicius, Ryan McConville, Raúl Santos-Rodríguez, Kevin Chetty, Robert J. Piechocki:
Translation Resilient Opportunistic WiFi Sensing. ICPR 2020: 5627-5633 - [c30]Haixia Bi, Raúl Santos-Rodríguez, Peter A. Flach:
Polsar Image Classification via Robust Low-Rank Feature Extraction and Markov Random Field. IGARSS 2020: 708-711 - [c29]Alexander Hepburn, Valero Laparra, Ryan McConville, Raúl Santos-Rodríguez:
Enforcing perceptual consistency on Generative Adversarial Networks by using the Normalised Laplacian Pyramid Distance. NLDL 2020: 1-6 - [d1]Kacper Sokol, Alexander Hepburn, Rafael Poyiadzi, Matthew Clifford, Raúl Santos-Rodríguez, Peter A. Flach:
FAT Forensics: A Python Toolbox for Implementing and Deploying Fairness, Accountability and Transparency Algorithms in Predictive Systems. Zenodo, 2020 - [i21]Rafael Poyiadzi, Weisong Yang, Yoav Ben-Shlomo, Ian Craddock, Liz Coulthard, Raúl Santos-Rodríguez, James Selwood, Niall Twomey:
Detecting Signatures of Early-stage Dementia with Behavioural Models Derived from Sensor Data. CoRR abs/2007.03615 (2020) - [i20]Valero Laparra, Juan Emmanuel Johnson, Gustau Camps-Valls, Raúl Santos-Rodríguez, Jesus Malo:
Information Theory Measures via Multidimensional Gaussianization. CoRR abs/2010.03807 (2020) - [i19]Taku Yamagata, Aisling Ann O'Kane, Amid Ayobi, Dmitri S. Katz, Katarzyna Stawarz, Paul Marshall, Peter A. Flach, Raúl Santos-Rodríguez:
Model-Based Reinforcement Learning for Type 1Diabetes Blood Glucose Control. CoRR abs/2010.06266 (2020) - [i18]Juan Emmanuel Johnson, Valero Laparra, Gustau Camps-Valls, Raúl Santos-Rodríguez, Jesús Malo:
Information Theory in Density Destructors. CoRR abs/2012.01012 (2020)
2010 – 2019
- 2019
- [j9]Michal Kozlowski, Raúl Santos-Rodríguez, Robert J. Piechocki:
Sensor Modalities and Fusion for Robust Indoor Localisation. EAI Endorsed Trans. Ambient Syst. 6(18): e5 (2019) - [j8]Pablo Morales-Alvarez, Pablo Ruiz, Raúl Santos-Rodríguez, Rafael Molina, Aggelos K. Katsaggelos:
Scalable and efficient learning from crowds with Gaussian processes. Inf. Fusion 52: 110-127 (2019) - [c28]Xiaoyang Wang, Ioannis Mavromatis, Andrea Tassi, Raúl Santos-Rodríguez, Robert J. Piechocki:
Location Anomalies Detection for Connected and Autonomous Vehicles. CAVS 2019: 1-5 - [c27]Rafael Poyiadzi, Raúl Santos-Rodríguez, Niall Twomey:
Active Learning with Label Proportions. ICASSP 2019: 3097-3101 - [i17]Niall Twomey, Michal Kozlowski, Raúl Santos-Rodríguez:
Neural ODEs with stochastic vector field mixtures. CoRR abs/1905.09905 (2019) - [i16]Bo Kang, Dario García-García, Jefrey Lijffijt, Raúl Santos-Rodríguez, Tijl De Bie:
Conditional t-SNE: Complementary t-SNE embeddings through factoring out prior information. CoRR abs/1905.10086 (2019) - [i15]Niall Twomey, Rafael Poyiadzi, Callum Mann, Raúl Santos-Rodríguez:
Ordinal Regression as Structured Classification. CoRR abs/1905.13658 (2019) - [i14]Xiaoyang Wang, Ioannis Mavromatis, Andrea Tassi, Raúl Santos-Rodríguez, Robert J. Piechocki:
Location Anomalies Detection for Connected and Autonomous Vehicles. CoRR abs/1907.00811 (2019) - [i13]Alexander Hepburn, Valero Laparra, Ryan McConville, Raúl Santos-Rodríguez:
Enforcing Perceptual Consistency on Generative Adversarial Networks by Using the Normalised Laplacian Pyramid Distance. CoRR abs/1908.04347 (2019) - [i12]Ryan McConville, Raúl Santos-Rodríguez, Robert J. Piechocki, Ian Craddock:
N2D: (Not Too) Deep Clustering via Clustering the Local Manifold of an Autoencoded Embedding. CoRR abs/1908.05968 (2019) - [i11]Taku Yamagata, Raúl Santos-Rodríguez, Ryan McConville, Atis Elsts:
Online Feature Selection for Activity Recognition using Reinforcement Learning with Multiple Feedback. CoRR abs/1908.06134 (2019) - [i10]Kacper Sokol, Raúl Santos-Rodríguez, Peter A. Flach:
FAT Forensics: A Python Toolbox for Algorithmic Fairness, Accountability and Transparency. CoRR abs/1909.05167 (2019) - [i9]Rafael Poyiadzi, Kacper Sokol, Raúl Santos-Rodriguez, Tijl De Bie, Peter A. Flach:
FACE: Feasible and Actionable Counterfactual Explanations. CoRR abs/1909.09369 (2019) - [i8]Alexander Hepburn, Valero Laparra, Jesús Malo, Ryan McConville, Raúl Santos-Rodríguez:
PerceptNet: A Human Visual System Inspired Neural Network for Estimating Perceptual Distance. CoRR abs/1910.12548 (2019) - [i7]Kacper Sokol, Alexander Hepburn, Raúl Santos-Rodríguez, Peter A. Flach:
bLIMEy: Surrogate Prediction Explanations Beyond LIME. CoRR abs/1910.13016 (2019) - 2018
- [j7]Bo Kang, Jefrey Lijffijt, Raúl Santos-Rodríguez, Tijl De Bie:
SICA: subjectively interesting component analysis. Data Min. Knowl. Discov. 32(4): 949-987 (2018) - [j6]Luis Gómez-Chova, Raúl Santos-Rodríguez, Gustau Camps-Valls:
Signal-to-noise ratio in reproducing kernel Hilbert spaces. Pattern Recognit. Lett. 112: 75-82 (2018) - [c26]Ryan McConville, Raúl Santos-Rodríguez, Niall Twomey:
Person Identification and Discovery With Wrist Worn Accelerometer Data. ESANN 2018 - [c25]Raúl Santos-Rodríguez, Niall Twomey:
Efficient approximate representations for computationally expensive features. ESANN 2018 - [c24]Atis Elsts, Ryan McConville, Xenofon Fafoutis, Niall Twomey, Robert J. Piechocki, Raúl Santos-Rodriguez, Ian Craddock:
On-Board Feature Extraction from Acceleration Data for Activity Recognition. EWSN 2018: 163-168 - [c23]Rafael Poyiadzi, Raúl Santos-Rodríguez, Niall Twomey:
Label Propagation for Learning with Label proportions. MLSP 2018: 1-6 - [c22]Alexander Hepburn, Ryan McConville, Raúl Santos-Rodríguez, Jesús Cid-Sueiro, Dario García-García:
Proper Losses for Learning with Example-Dependent Costs. LIDTA@ECML/PKDD 2018: 52-66 - [c21]Rafael Poyiadzi, Raúl Santos-Rodríguez, Tijl De Bie:
Ordinal Label Proportions. ECML/PKDD (1) 2018: 306-321 - [c20]Michal Kozlowski, Dallan Byrne, Raúl Santos-Rodríguez, Robert J. Piechocki:
Data fusion for robust indoor localisation in digital health. WCNC Workshops 2018: 302-307 - [c19]Ryan McConville, Dallan Byrne, Ian Craddock, Robert J. Piechocki, James Pope, Raúl Santos-Rodríguez:
Understanding the quality of calibrations for indoor localisation. WF-IoT 2018: 676-681 - [i6]Ryan McConville, Gareth Archer, Ian Craddock, Herman J. ter Horst, Robert J. Piechocki, James Pope, Raúl Santos-Rodriguez:
Online Heart Rate Prediction using Acceleration from a Wrist Worn Wearable. CoRR abs/1807.04667 (2018) - [i5]Rafael Poyiadzi, Raúl Santos-Rodríguez, Niall Twomey:
Label Propagation for Learning with Label Proportions. CoRR abs/1810.10328 (2018) - [i4]Michal Kozlowski, Ryan McConville, Raúl Santos-Rodríguez, Robert J. Piechocki:
Energy Efficiency in Reinforcement Learning for Wireless Sensor Networks. CoRR abs/1812.02538 (2018) - 2017
- [c18]Miquel Perelló-Nieto, Raúl Santos-Rodríguez, Jesús Cid-Sueiro:
Adapting Supervised Classification Algorithms to Arbitrary Weak Label Scenarios. IDA 2017: 247-259 - [c17]Paolo Simeone, Raúl Santos-Rodríguez, Matt McVicar, Jefrey Lijffijt, Tijl De Bie:
Hierarchical Novelty Detection. IDA 2017: 310-321 - [c16]James Pope, Ryan McConville, Michal Kozlowski, Xenofon Fafoutis, Raúl Santos-Rodríguez, Robert J. Piechocki, Ian Craddock:
SPHERE in a Box: Practical and Scalable EurValve Activity Monitoring Smart Home Kit. LCN Workshops 2017: 128-135 - 2016
- [c15]Tijl De Bie, Jefrey Lijffijt, Raúl Santos-Rodríguez, Bo Kang:
Informative data projections: a framework and two examples. ESANN 2016 - [c14]Matt McVicar, Raúl Santos-Rodriguez, Tijl De Bie:
Learning to separate vocals from polyphonic mixtures via ensemble methods and structured output prediction. ICASSP 2016: 450-454 - [c13]Bo Kang, Jefrey Lijffijt, Raúl Santos-Rodriguez, Tijl De Bie:
Subjectively Interesting Component Analysis: Data Projections that Contrast with Prior Expectations. KDD 2016: 1615-1624 - [c12]Tijl De Bie, Jefrey Lijffijt, Cédric Mesnage, Raúl Santos-Rodriguez:
Detecting trends in twitter time series. MLSP 2016: 1-6 - 2015
- [c11]Valero Laparra, Raúl Santos-Rodríguez:
Spatial/spectral information trade-off in hyperspectral images. IGARSS 2015: 1124-1127 - [i3]Tijl De Bie, Jefrey Lijffijt, Raúl Santos-Rodriguez, Bo Kang:
Informative Data Projections: A Framework and Two Examples. CoRR abs/1511.08762 (2015) - 2014
- [j5]Matt McVicar, Raúl Santos-Rodriguez, Yizhao Ni, Tijl De Bie:
Automatic Chord Estimation from Audio: A Review of the State of the Art. IEEE ACM Trans. Audio Speech Lang. Process. 22(2): 556-575 (2014) - [c10]Jesús Cid-Sueiro, Dario García-García, Raúl Santos-Rodríguez:
Consistency of Losses for Learning from Weak Labels. ECML/PKDD (1) 2014: 197-210 - 2013
- [j4]Yizhao Ni, Matt McVicar, Raúl Santos-Rodríguez, Tijl De Bie:
Understanding Effects of Subjectivity in Measuring Chord Estimation Accuracy. IEEE ACM Trans. Audio Speech Lang. Process. 21(12): 2607-2615 (2013) - 2012
- [j3]Yizhao Ni, Matt McVicar, Raúl Santos-Rodriguez, Tijl De Bie:
An End-to-End Machine Learning System for Harmonic Analysis of Music. IEEE Trans. Speech Audio Process. 20(6): 1771-1783 (2012) - [j2]Raúl Santos-Rodríguez, Jesús Cid-Sueiro:
Cost-Sensitive Sequences of Bregman Divergences. IEEE Trans. Neural Networks Learn. Syst. 23(12): 1896-1904 (2012) - [c9]Yizhao Ni, Matt McVicar, Raúl Santos-Rodriguez, Tijl De Bie:
Using Hyper-genre Training to Explore Genre Information for Automatic Chord Estimation. ISMIR 2012: 109-114 - [c8]Dario García-García, Raúl Santos-Rodríguez, Emilio Parrado-Hernández:
Classifier-based affinities for clustering sets of vectors. MLSP 2012: 1-6 - 2011
- [c7]Dario García-García, Raúl Santos-Rodríguez:
Sphere packing for clustering sets of vectors in feature space. ICASSP 2011: 2092-2095 - [c6]Dario García-García, Ulrike von Luxburg, Raúl Santos-Rodríguez:
Risk-Based Generalizations of f-divergences. ICML 2011: 417-424 - [c5]Matt McVicar, Yizhao Ni, Tijl De Bie, Raúl Santos-Rodriguez:
Leveraging Noisy Online Databases for Use in Chord Recognition. ISMIR 2011: 639-644 - [i2]Yizhao Ni, Matt McVicar, Raúl Santos-Rodriguez, Tijl De Bie:
An end-to-end machine learning system for harmonic analysis of music. CoRR abs/1107.4969 (2011) - [i1]Yizhao Ni, Matt McVicar, Raúl Santos-Rodriguez, Tijl De Bie:
Meta-song evaluation for chord recognition. CoRR abs/1109.0420 (2011) - 2010
- [c4]Raúl Santos-Rodríguez, Dario García-García:
Cost-Sensitive Feature Selection Based on the Set Covering Machine. ICDM Workshops 2010: 740-746
2000 – 2009
- 2009
- [j1]Raúl Santos-Rodríguez, Alicia Guerrero-Curieses, Rocío Alaíz-Rodríguez, Jesús Cid-Sueiro:
Cost-sensitive learning based on Bregman divergences. Mach. Learn. 76(2-3): 271-285 (2009) - [c3]Dario García-García, Raúl Santos-Rodríguez:
Spectral Clustering and Feature Selection for Microarray Data. ICMLA 2009: 425-428 - [c2]Raúl Santos-Rodríguez, Dario García-García, Jesús Cid-Sueiro:
Cost-Sensitive Classification Based on Bregman Divergences for Medical Diagnosis. ICMLA 2009: 551-556 - [c1]Raúl Santos-Rodríguez, Alicia Guerrero-Curieses, Rocío Alaíz-Rodríguez, Jesús Cid-Sueiro:
Cost-Sensitive Learning Based on Bregman Divergences. ECML/PKDD (1) 2009: 12
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-10 21:40 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint