default search action
Decebal Constantin Mocanu
Person information
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c46]Kaiting Liu, Zahra Atashgahi, Ghada Sokar, Mykola Pechenizkiy, Decebal Constantin Mocanu:
Supervised Feature Selection via Ensemble Gradient Information from Sparse Neural Networks. AISTATS 2024: 3952-3960 - [c45]Bram Grooten, Tristan Tomilin, Gautham Vasan, Matthew E. Taylor, A. Rupam Mahmood, Meng Fang, Mykola Pechenizkiy, Decebal Constantin Mocanu:
MaDi: Learning to Mask Distractions for Generalization in Visual Deep Reinforcement Learning. AAMAS 2024: 733-742 - [c44]Zahra Atashgahi, Tennison Liu, Mykola Pechenizkiy, Raymond N. J. Veldhuis, Decebal Constantin Mocanu, Mihaela van der Schaar:
Unveiling the Power of Sparse Neural Networks for Feature Selection. ECAI 2024: 2669-2676 - [c43]Zahra Atashgahi, Mykola Pechenizkiy, Raymond N. J. Veldhuis, Decebal Constantin Mocanu:
Adaptive Sparsity Level During Training for Efficient Time Series Forecasting with Transformers. ECML/PKDD (1) 2024: 3-20 - [i50]Murat Onur Yildirim, Elif Ceren Gok Yildirim, Decebal Constantin Mocanu, Joaquin Vanschoren:
FOCIL: Finetune-and-Freeze for Online Class Incremental Learning by Training Randomly Pruned Sparse Experts. CoRR abs/2403.14684 (2024) - [i49]Calarina Muslimani, Bram Grooten, Deepak Ranganatha Sastry Mamillapalli, Mykola Pechenizkiy, Decebal Constantin Mocanu, Matthew E. Taylor:
Boosting Robustness in Preference-Based Reinforcement Learning with Dynamic Sparsity. CoRR abs/2406.06495 (2024) - [i48]Qiao Xiao, Pingchuan Ma, Adriana Fernandez-Lopez, Boqian Wu, Lu Yin, Stavros Petridis, Mykola Pechenizkiy, Maja Pantic, Decebal Constantin Mocanu, Shiwei Liu:
Dynamic Data Pruning for Automatic Speech Recognition. CoRR abs/2406.18373 (2024) - [i47]Zahra Atashgahi, Tennison Liu, Mykola Pechenizkiy, Raymond N. J. Veldhuis, Decebal Constantin Mocanu, Mihaela van der Schaar:
Unveiling the Power of Sparse Neural Networks for Feature Selection. CoRR abs/2408.04583 (2024) - [i46]Qiao Xiao, Boqian Wu, Lu Yin, Christopher Neil Gadzinski, Tianjin Huang, Mykola Pechenizkiy, Decebal Constantin Mocanu:
Are Sparse Neural Networks Better Hard Sample Learners? CoRR abs/2409.09196 (2024) - [i45]Boqian Wu, Qiao Xiao, Shunxin Wang, Nicola Strisciuglio, Mykola Pechenizkiy, Maurice van Keulen, Decebal Constantin Mocanu, Elena Mocanu:
Dynamic Sparse Training versus Dense Training: The Unexpected Winner in Image Corruption Robustness. CoRR abs/2410.03030 (2024) - [i44]Camiel Oerlemans, Bram Grooten, Michiel Braat, Alaa Alassi, Emilia Silvas, Decebal Constantin Mocanu:
LiMTR: Time Series Motion Prediction for Diverse Road Users through Multimodal Feature Integration. CoRR abs/2410.15819 (2024) - 2023
- [j19]Karine Miras, Decebal Constantin Mocanu, A. E. Eiben:
Hu-bot: promoting the cooperation between humans and mobile robots. Neural Comput. Appl. 35(23): 16841-16852 (2023) - [j18]Zahra Atashgahi, Xuhao Zhang, Neil Kichler, Shiwei Liu, Lu Yin, Mykola Pechenizkiy, Raymond N. J. Veldhuis, Decebal Constantin Mocanu:
Supervised Feature Selection with Neuron Evolution in Sparse Neural Networks. Trans. Mach. Learn. Res. 2023 (2023) - [c42]Bram Grooten, Ghada Sokar, Shibhansh Dohare, Elena Mocanu, Matthew E. Taylor, Mykola Pechenizkiy, Decebal Constantin Mocanu:
Automatic Noise Filtering with Dynamic Sparse Training in Deep Reinforcement Learning. AAMAS 2023: 1932-1941 - [c41]Shiwei Liu, Tianlong Chen, Xiaohan Chen, Xuxi Chen, Qiao Xiao, Boqian Wu, Tommi Kärkkäinen, Mykola Pechenizkiy, Decebal Constantin Mocanu, Zhangyang Wang:
More ConvNets in the 2020s: Scaling up Kernels Beyond 51x51 using Sparsity. ICLR 2023 - [c40]Aleksandra Nowak, Bram Grooten, Decebal Constantin Mocanu, Jacek Tabor:
Fantastic Weights and How to Find Them: Where to Prune in Dynamic Sparse Training. NeurIPS 2023 - [i43]Bram Grooten, Ghada Sokar, Shibhansh Dohare, Elena Mocanu, Matthew E. Taylor, Mykola Pechenizkiy, Decebal Constantin Mocanu:
Automatic Noise Filtering with Dynamic Sparse Training in Deep Reinforcement Learning. CoRR abs/2302.06548 (2023) - [i42]Zahra Atashgahi, Xuhao Zhang, Neil Kichler, Shiwei Liu, Lu Yin, Mykola Pechenizkiy, Raymond N. J. Veldhuis, Decebal Constantin Mocanu:
Supervised Feature Selection with Neuron Evolution in Sparse Neural Networks. CoRR abs/2303.07200 (2023) - [i41]Zahra Atashgahi, Mykola Pechenizkiy, Raymond N. J. Veldhuis, Decebal Constantin Mocanu:
Adaptive Sparsity Level during Training for Efficient Time Series Forecasting with Transformers. CoRR abs/2305.18382 (2023) - [i40]Aleksandra Nowak, Bram Grooten, Decebal Constantin Mocanu, Jacek Tabor:
Fantastic Weights and How to Find Them: Where to Prune in Dynamic Sparse Training. CoRR abs/2306.12230 (2023) - [i39]Murat Onur Yildirim, Elif Ceren Gok Yildirim, Ghada Sokar, Decebal Constantin Mocanu, Joaquin Vanschoren:
Continual Learning with Dynamic Sparse Training: Exploring Algorithms for Effective Model Updates. CoRR abs/2308.14831 (2023) - [i38]Boqian Wu, Qiao Xiao, Shiwei Liu, Lu Yin, Mykola Pechenizkiy, Decebal Constantin Mocanu, Maurice van Keulen, Elena Mocanu:
E2ENet: Dynamic Sparse Feature Fusion for Accurate and Efficient 3D Medical Image Segmentation. CoRR abs/2312.04727 (2023) - [i37]Bram Grooten, Tristan Tomilin, Gautham Vasan, Matthew E. Taylor, A. Rupam Mahmood, Meng Fang, Mykola Pechenizkiy, Decebal Constantin Mocanu:
MaDi: Learning to Mask Distractions for Generalization in Visual Deep Reinforcement Learning. CoRR abs/2312.15339 (2023) - 2022
- [j17]Zahra Atashgahi, Ghada Sokar, Tim van der Lee, Elena Mocanu, Decebal Constantin Mocanu, Raymond N. J. Veldhuis, Mykola Pechenizkiy:
Quick and robust feature selection: the strength of energy-efficient sparse training for autoencoders. Mach. Learn. 111(1): 377-414 (2022) - [j16]Zahra Atashgahi, Joost Pieterse, Shiwei Liu, Decebal Constantin Mocanu, Raymond N. J. Veldhuis, Mykola Pechenizkiy:
A brain-inspired algorithm for training highly sparse neural networks. Mach. Learn. 111(12): 4411-4452 (2022) - [j15]Manuel Muñoz Sánchez, Denis Pogosov, Emilia Silvas, Decebal Constantin Mocanu, Jos Elfring, René van de Molengraft:
Situation-Aware Drivable Space Estimation for Automated Driving. IEEE Trans. Intell. Transp. Syst. 23(7): 9615-9629 (2022) - [c39]Shiwei Liu, Tianlong Chen, Zahra Atashgahi, Xiaohan Chen, Ghada Sokar, Elena Mocanu, Mykola Pechenizkiy, Zhangyang Wang, Decebal Constantin Mocanu:
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity. ICLR 2022 - [c38]Shiwei Liu, Tianlong Chen, Xiaohan Chen, Li Shen, Decebal Constantin Mocanu, Zhangyang Wang, Mykola Pechenizkiy:
The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training. ICLR 2022 - [c37]Ghada Sokar, Elena Mocanu, Decebal Constantin Mocanu, Mykola Pechenizkiy, Peter Stone:
Dynamic Sparse Training for Deep Reinforcement Learning. IJCAI 2022: 3437-3443 - [c36]Tianjin Huang, Tianlong Chen, Meng Fang, Vlado Menkovski, Jiaxu Zhao, Lu Yin, Yulong Pei, Decebal Constantin Mocanu, Zhangyang Wang, Mykola Pechenizkiy, Shiwei Liu:
You Can Have Better Graph Neural Networks by Not Training Weights at All: Finding Untrained GNNs Tickets. LoG 2022: 8 - [c35]Ghada Sokar, Zahra Atashgahi, Mykola Pechenizkiy, Decebal Constantin Mocanu:
Where to Pay Attention in Sparse Training for Feature Selection? NeurIPS 2022 - [c34]Qiao Xiao, Boqian Wu, Yu Zhang, Shiwei Liu, Mykola Pechenizkiy, Elena Mocanu, Decebal Constantin Mocanu:
Dynamic Sparse Network for Time Series Classification: Learning What to "See". NeurIPS 2022 - [c33]Ghada Sokar, Decebal Constantin Mocanu, Mykola Pechenizkiy:
Avoiding Forgetting and Allowing Forward Transfer in Continual Learning via Sparse Networks. ECML/PKDD (3) 2022: 85-101 - [i36]Shiwei Liu, Tianlong Chen, Xiaohan Chen, Li Shen, Decebal Constantin Mocanu, Zhangyang Wang, Mykola Pechenizkiy:
The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training. CoRR abs/2202.02643 (2022) - [i35]Lu Yin, Vlado Menkovski, Meng Fang, Tianjin Huang, Yulong Pei, Mykola Pechenizkiy, Decebal Constantin Mocanu, Shiwei Liu:
Superposing Many Tickets into One: A Performance Booster for Sparse Neural Network Training. CoRR abs/2205.15322 (2022) - [i34]Shiwei Liu, Tianlong Chen, Xiaohan Chen, Xuxi Chen, Qiao Xiao, Boqian Wu, Mykola Pechenizkiy, Decebal Constantin Mocanu, Zhangyang Wang:
More ConvNets in the 2020s: Scaling up Kernels Beyond 51x51 using Sparsity. CoRR abs/2207.03620 (2022) - [i33]Zahra Atashgahi, Decebal Constantin Mocanu, Raymond N. J. Veldhuis, Mykola Pechenizkiy:
Memory-free Online Change-point Detection: A Novel Neural Network Approach. CoRR abs/2207.03932 (2022) - [i32]Ghada Sokar, Zahra Atashgahi, Mykola Pechenizkiy, Decebal Constantin Mocanu:
Where to Pay Attention in Sparse Training for Feature Selection? CoRR abs/2211.14627 (2022) - [i31]Tianjin Huang, Tianlong Chen, Meng Fang, Vlado Menkovski, Jiaxu Zhao, Lu Yin, Yulong Pei, Decebal Constantin Mocanu, Zhangyang Wang, Mykola Pechenizkiy, Shiwei Liu:
You Can Have Better Graph Neural Networks by Not Training Weights at All: Finding Untrained GNNs Tickets. CoRR abs/2211.15335 (2022) - [i30]Qiao Xiao, Boqian Wu, Yu Zhang, Shiwei Liu, Mykola Pechenizkiy, Elena Mocanu, Decebal Constantin Mocanu:
Dynamic Sparse Network for Time Series Classification: Learning What to "see". CoRR abs/2212.09840 (2022) - 2021
- [j14]Anil Yaman, Giovanni Iacca, Decebal Constantin Mocanu, Matt Coler, George Fletcher, Mykola Pechenizkiy:
Evolving Plasticity for Autonomous Learning under Changing Environmental Conditions. Evol. Comput. 29(3): 391-414 (2021) - [j13]Ghada Sokar, Decebal Constantin Mocanu, Mykola Pechenizkiy:
SpaceNet: Make Free Space for Continual Learning. Neurocomputing 439: 1-11 (2021) - [j12]Shiwei Liu, Decebal Constantin Mocanu, Amarsagar Reddy Ramapuram Matavalam, Yulong Pei, Mykola Pechenizkiy:
Sparse evolutionary deep learning with over one million artificial neurons on commodity hardware. Neural Comput. Appl. 33(7): 2589-2604 (2021) - [j11]Shiwei Liu, Iftitahu Ni'mah, Vlado Menkovski, Decebal Constantin Mocanu, Mykola Pechenizkiy:
Efficient and effective training of sparse recurrent neural networks. Neural Comput. Appl. 33(15): 9625-9636 (2021) - [c32]Decebal Constantin Mocanu, Elena Mocanu, Tiago Pinto, Selima Curci, Phuong H. Nguyen, Madeleine Gibescu, Damien Ernst, Zita A. Vale:
Sparse Training Theory for Scalable and Efficient Agents. AAMAS 2021: 34-38 - [c31]Ghada Sokar, Decebal Constantin Mocanu, Mykola Pechenizkiy:
Self-Attention Meta-Learner for Continual Learning. AAMAS 2021: 1658-1660 - [c30]Shiwei Liu, Decebal Constantin Mocanu, Yulong Pei, Mykola Pechenizkiy:
Selfish Sparse RNN Training. ICML 2021: 6893-6904 - [c29]Shiwei Liu, Lu Yin, Decebal Constantin Mocanu, Mykola Pechenizkiy:
Do We Actually Need Dense Over-Parameterization? In-Time Over-Parameterization in Sparse Training. ICML 2021: 6989-7000 - [c28]Shiwei Liu, Tianlong Chen, Xiaohan Chen, Zahra Atashgahi, Lu Yin, Huanyu Kou, Li Shen, Mykola Pechenizkiy, Zhangyang Wang, Decebal Constantin Mocanu:
Sparse Training via Boosting Pruning Plasticity with Neuroregeneration. NeurIPS 2021: 9908-9922 - [i29]Ghada Sokar, Decebal Constantin Mocanu, Mykola Pechenizkiy:
Learning Invariant Representation for Continual Learning. CoRR abs/2101.06162 (2021) - [i28]Shiwei Liu, Decebal Constantin Mocanu, Yulong Pei, Mykola Pechenizkiy:
Selfish Sparse RNN Training. CoRR abs/2101.09048 (2021) - [i27]Ghada Sokar, Decebal Constantin Mocanu, Mykola Pechenizkiy:
Self-Attention Meta-Learner for Continual Learning. CoRR abs/2101.12136 (2021) - [i26]Selima Curci, Decebal Constantin Mocanu, Mykola Pechenizkiy:
Truly Sparse Neural Networks at Scale. CoRR abs/2102.01732 (2021) - [i25]Shiwei Liu, Lu Yin, Decebal Constantin Mocanu, Mykola Pechenizkiy:
Do We Actually Need Dense Over-Parameterization? In-Time Over-Parameterization in Sparse Training. CoRR abs/2102.02887 (2021) - [i24]Decebal Constantin Mocanu, Elena Mocanu, Tiago Pinto, Selima Curci, Phuong H. Nguyen, Madeleine Gibescu, Damien Ernst, Zita A. Vale:
Sparse Training Theory for Scalable and Efficient Agents. CoRR abs/2103.01636 (2021) - [i23]Ghada Sokar, Elena Mocanu, Decebal Constantin Mocanu, Mykola Pechenizkiy, Peter Stone:
Dynamic Sparse Training for Deep Reinforcement Learning. CoRR abs/2106.04217 (2021) - [i22]Shiwei Liu, Tianlong Chen, Xiaohan Chen, Zahra Atashgahi, Lu Yin, Huanyu Kou, Li Shen, Mykola Pechenizkiy, Zhangyang Wang, Decebal Constantin Mocanu:
Sparse Training via Boosting Pruning Plasticity with Neuroregeneration. CoRR abs/2106.10404 (2021) - [i21]Shiwei Liu, Tianlong Chen, Zahra Atashgahi, Xiaohan Chen, Ghada Sokar, Elena Mocanu, Mykola Pechenizkiy, Zhangyang Wang, Decebal Constantin Mocanu:
FreeTickets: Accurate, Robust and Efficient Deep Ensemble by Training with Dynamic Sparsity. CoRR abs/2106.14568 (2021) - [i20]Ghada Sokar, Decebal Constantin Mocanu, Mykola Pechenizkiy:
Addressing the Stability-Plasticity Dilemma via Knowledge-Aware Continual Learning. CoRR abs/2110.05329 (2021) - 2020
- [c27]Anil Yaman, Giovanni Iacca, Decebal Constantin Mocanu, George Fletcher, Mykola Pechenizkiy:
Novelty producing synaptic plasticity. GECCO Companion 2020: 93-94 - [c26]Shiwei Liu, Tim van der Lee, Anil Yaman, Zahra Atashgahi, Davide Ferraro, Ghada Sokar, Mykola Pechenizkiy, Decebal Constantin Mocanu:
Topological Insights into Sparse Neural Networks. ECML/PKDD (3) 2020: 279-294 - [c25]Manuel Muñoz Sánchez, Emilia Silvas, Denis Pogosov, Decebal Constantin Mocanu:
A Hybrid Framework Combining Vehicle System Knowledge with Machine Learning Methods for Improved Highway Trajectory Prediction. SMC 2020: 444-450 - [i19]Sibylle Hess, Wouter Duivesteijn, Decebal Constantin Mocanu:
Softmax-based Classification is k-means Clustering: Formal Proof, Consequences for Adversarial Attacks, and Improvement through Centroid Based Tailoring. CoRR abs/2001.01987 (2020) - [i18]Anil Yaman, Giovanni Iacca, Decebal Constantin Mocanu, George H. L. Fletcher, Mykola Pechenizkiy:
Novelty Producing Synaptic Plasticity. CoRR abs/2002.03620 (2020) - [i17]Shiwei Liu, Tim van der Lee, Anil Yaman, Zahra Atashgahi, Davide Ferraro, Ghada Sokar, Mykola Pechenizkiy, Decebal Constantin Mocanu:
Topological Insights in Sparse Neural Networks. CoRR abs/2006.14085 (2020) - [i16]Ghada Sokar, Decebal Constantin Mocanu, Mykola Pechenizkiy:
SpaceNet: Make Free Space For Continual Learning. CoRR abs/2007.07617 (2020) - [i15]Zahra Atashgahi, Ghada Sokar, Tim van der Lee, Elena Mocanu, Decebal Constantin Mocanu, Raymond N. J. Veldhuis, Mykola Pechenizkiy:
Quick and Robust Feature Selection: the Strength of Energy-efficient Sparse Training for Autoencoders. CoRR abs/2012.00560 (2020)
2010 – 2019
- 2019
- [j10]Francesco Cauteruccio, Giancarlo Fortino, Antonio Guerrieri, Antonio Liotta, Decebal Constantin Mocanu, Cristian Perra, Giorgio Terracina, Maria Torres Vega:
Short-long term anomaly detection in wireless sensor networks based on machine learning and multi-parameterized edit distance. Inf. Fusion 52: 13-30 (2019) - [j9]Elena Mocanu, Decebal Constantin Mocanu, Phuong H. Nguyen, Antonio Liotta, Michael E. Webber, Madeleine Gibescu, Johannes G. Slootweg:
On-Line Building Energy Optimization Using Deep Reinforcement Learning. IEEE Trans. Smart Grid 10(4): 3698-3708 (2019) - [c24]Anil Yaman, Giovanni Iacca, Decebal Constantin Mocanu, George H. L. Fletcher, Mykola Pechenizkiy:
Learning with delayed synaptic plasticity. GECCO 2019: 152-160 - [i14]Shiwei Liu, Decebal Constantin Mocanu, Amarsagar Reddy Ramapuram Matavalam, Yulong Pei, Mykola Pechenizkiy:
Sparse evolutionary Deep Learning with over one million artificial neurons on commodity hardware. CoRR abs/1901.09181 (2019) - [i13]Shiwei Liu, Decebal Constantin Mocanu, Mykola Pechenizkiy:
Intrinsically Sparse Long Short-Term Memory Networks. CoRR abs/1901.09208 (2019) - [i12]Joost Pieterse, Decebal Constantin Mocanu:
Evolving and Understanding Sparse Deep Neural Networks using Cosine Similarity. CoRR abs/1903.07138 (2019) - [i11]Anil Yaman, Giovanni Iacca, Decebal Constantin Mocanu, George H. L. Fletcher, Mykola Pechenizkiy:
Learning with Delayed Synaptic Plasticity. CoRR abs/1903.09393 (2019) - [i10]Anil Yaman, Decebal Constantin Mocanu, Giovanni Iacca, Matt Coler, George H. L. Fletcher, Mykola Pechenizkiy:
Evolving Plasticity for Autonomous Learning under Changing Environmental Conditions. CoRR abs/1904.01709 (2019) - [i9]Shiwei Liu, Decebal Constantin Mocanu, Mykola Pechenizkiy:
On improving deep learning generalization with adaptive sparse connectivity. CoRR abs/1906.11626 (2019) - 2018
- [c23]Decebal Constantin Mocanu, Elena Mocanu:
One-Shot Learning using Mixture of Variational Autoencoders: a Generalization Learning approach. AAMAS 2018: 2016-2018 - [c22]Anil Yaman, Decebal Constantin Mocanu, Giovanni Iacca, George H. L. Fletcher, Mykola Pechenizkiy:
Limited evaluation cooperative co-evolutionary differential evolution for large-scale neuroevolution. GECCO 2018: 569-576 - [c21]Decebal Constantin Mocanu:
Synopsis of the PhD Thesis - Network Computations in Artificial Intelligence. ITC (1) 2018: 117-122 - [i8]Anil Yaman, Decebal Constantin Mocanu, Giovanni Iacca, George H. L. Fletcher, Mykola Pechenizkiy:
Limited Evaluation Cooperative Co-evolutionary Differential Evolution for Large-scale Neuroevolution. CoRR abs/1804.07234 (2018) - [i7]Decebal Constantin Mocanu, Elena Mocanu:
One-Shot Learning using Mixture of Variational Autoencoders: a Generalization Learning approach. CoRR abs/1804.07645 (2018) - 2017
- [j8]Maria Torres Vega, Decebal Constantin Mocanu, Antonio Liotta:
Unsupervised deep learning for real-time assessment of video streaming services. Multim. Tools Appl. 76(21): 22303-22327 (2017) - [j7]Decebal Constantin Mocanu, Haitham Bou-Ammar, Luis Puig, Eric Eaton, Antonio Liotta:
Estimating 3D trajectories from 2D projections via disjunctive factored four-way conditional restricted Boltzmann machines. Pattern Recognit. 69: 325-335 (2017) - [j6]Maria Torres Vega, Decebal Constantin Mocanu, Stavros Stavrou, Antonio Liotta:
Predictive no-reference assessment of video quality. Signal Process. Image Commun. 52: 20-32 (2017) - [j5]Maria Torres Vega, Decebal Constantin Mocanu, Jeroen Famaey, Stavros Stavrou, Antonio Liotta:
Deep Learning for Quality Assessment in Live Video Streaming. IEEE Signal Process. Lett. 24(6): 736-740 (2017) - [c20]Maria Torres Vega, Cristian Perra, Decebal Constantin Mocanu, Antonio Liotta:
Effect of lossy networks on stereoscopic 3D-video streams. BMSB 2017: 1-4 - [i6]Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H. Nguyen, Madeleine Gibescu, Antonio Liotta:
Evolutionary Training of Sparse Artificial Neural Networks: A Network Science Perspective. CoRR abs/1707.04780 (2017) - [i5]Elena Mocanu, Decebal Constantin Mocanu, Phuong H. Nguyen, Antonio Liotta, Michael E. Webber, Madeleine Gibescu, Johannes G. Slootweg:
On-line Building Energy Optimization using Deep Reinforcement Learning. CoRR abs/1707.05878 (2017) - 2016
- [j4]Maria Torres Vega, Vittorio Sguazzo, Decebal Constantin Mocanu, Antonio Liotta:
An experimental survey of no-reference video quality assessment methods. Int. J. Pervasive Comput. Commun. 12(1): 66-86 (2016) - [j3]Decebal Constantin Mocanu, Elena Mocanu, Phuong H. Nguyen, Madeleine Gibescu, Antonio Liotta:
A topological insight into restricted Boltzmann machines. Mach. Learn. 104(2-3): 243-270 (2016) - [c19]Decebal Constantin Mocanu:
On the Synergy of Network Science and Artificial Intelligence. IJCAI 2016: 4020-4021 - [c18]Michele Chincoli, Aly Aamer Syed, Decebal Constantin Mocanu, Antonio Liotta:
Predictive Power Control in Wireless Sensor Networks. IoTDI 2016: 309-312 - [c17]Maria Torres Vega, Decebal Constantin Mocanu, Antonio Liotta:
A Regression Method for real-time video quality evaluation. MoMM 2016: 217-224 - [c16]Decebal Constantin Mocanu, Elena Mocanu, Phuong H. Nguyen, Madeleine Gibescu, Antonio Liotta:
Big IoT data mining for real-time energy disaggregation in buildings. SMC 2016: 3765-3769 - [c15]Kathrin Borchert, Matthias Hirth, Thomas Zinner, Decebal Constantin Mocanu:
Correlating QoE and Technical Parameters of an SAP System in an Enterprise Environment. QCMan@ITC 2016: 34-36 - [i4]Decebal Constantin Mocanu, Haitham Bou-Ammar, Luis Puig, Eric Eaton, Antonio Liotta:
Estimating 3D Trajectories from 2D Projections via Disjunctive Factored Four-Way Conditional Restricted Boltzmann Machines. CoRR abs/1604.05865 (2016) - [i3]Decebal Constantin Mocanu, Elena Mocanu, Phuong H. Nguyen, Madeleine Gibescu, Antonio Liotta:
A topological insight into restricted Boltzmann machines. CoRR abs/1604.05978 (2016) - [i2]Maria Torres Vega, Decebal Constantin Mocanu, Antonio Liotta:
Predictive No-Reference Assessment of Video Quality. CoRR abs/1604.07322 (2016) - [i1]Decebal Constantin Mocanu, Maria Torres Vega, Eric Eaton, Peter Stone, Antonio Liotta:
Online Contrastive Divergence with Generative Replay: Experience Replay without Storing Data. CoRR abs/1610.05555 (2016) - 2015
- [j2]Decebal Constantin Mocanu, Jeevan Pokhrel, Juan Pablo Garella, Janne Seppänen, Eirini Liotou, Manish Narwaria:
No-reference video quality measurement: added value of machine learning. J. Electronic Imaging 24(6): 061208 (2015) - [j1]Decebal Constantin Mocanu, Haitham Bou-Ammar, Dietwig Lowet, Kurt Driessens, Antonio Liotta, Gerhard Weiss, Karl Tuyls:
Factored four way conditional restricted Boltzmann machines for activity recognition. Pattern Recognit. Lett. 66: 100-108 (2015) - [c14]Decebal Constantin Mocanu, Maria Torres Vega, Antonio Liotta:
Redundancy Reduction in Wireless Sensor Networks via Centrality Metrics. ICDM Workshops 2015: 501-507 - [c13]Decebal Constantin Mocanu, Georgios Exarchakos, Haitham Bou-Ammar, Antonio Liotta:
Reduced reference image quality assessment via Boltzmann Machines. IM 2015: 1278-1281 - [c12]Maria Torres Vega, Decebal Constantin Mocanu, Rosario Barresi, Giancarlo Fortino, Antonio Liotta:
Cognitive streaming on android devices. IM 2015: 1316-1321 - [c11]Maria Torres Vega, Vittorio Sguazzo, Decebal Constantin Mocanu, Antonio Liotta:
Accuracy of No-Reference Quality Metrics in Network-impaired Video Streams. MoMM 2015: 326-333 - [c10]Maria Torres Vega, Emanuele Giordano, Decebal Constantin Mocanu, Dian Tjondronegoro, Antonio Liotta:
Cognitive no-reference video quality assessment for mobile streaming services. QoMEX 2015: 1-6 - 2014
- [c9]Decebal Constantin Mocanu, Giuliano Santandrea, Walter Cerroni, Franco Callegati, Antonio Liotta:
Network performance assessment with Quality of experience benchmarks. CNSM 2014: 332-335 - [c8]Maria Torres Vega, Shihuan Zou, Decebal Constantin Mocanu, Eduward Tangdiongga, Antonius M. J. Koonen, Antonio Liotta:
End-to-end performance evaluation in high-speed wireless networks. CNSM 2014: 344-347 - [c7]Decebal Constantin Mocanu, Georgios Exarchakos, Antonio Liotta:
Deep learning for objective quality assessment of 3D images. ICIP 2014: 758-762 - [c6]Decebal Constantin Mocanu, Antonio Liotta, Arianna Ricci, Maria Torres Vega, Georgios Exarchakos:
When does lower bitrate give higher quality in modern video services? NOMS 2014: 1-5 - [c5]Elena Mocanu, Decebal Constantin Mocanu, Haitham Bou-Ammar, Zoran Zivkovic, Antonio Liotta, Evgueni N. Smirnov:
Inexpensive user tracking using Boltzmann Machines. SMC 2014: 1-6 - [c4]Decebal Constantin Mocanu, Georgios Exarchakos, Antonio Liotta:
Node centrality awareness via swarming effects. SMC 2014: 19-24 - 2013
- [c3]Roshan Kotian, Georgios Exarchakos, Decebal Constantin Mocanu, Antonio Liotta:
Predicting Battery Depletion of Neighboring Wireless Sensor Nodes. ICA3PP (2) 2013: 276-284 - [c2]Antonio Liotta, Decebal Constantin Mocanu, Vlado Menkovski, Luciana Cagnetta, Georgios Exarchakos:
Instantaneous Video Quality Assessment for lightweight devices. MoMM 2013: 525 - [c1]Haitham Bou-Ammar, Decebal Constantin Mocanu, Matthew E. Taylor, Kurt Driessens, Karl Tuyls, Gerhard Weiss:
Automatically Mapped Transfer between Reinforcement Learning Tasks via Three-Way Restricted Boltzmann Machines. ECML/PKDD (2) 2013: 449-464
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-27 21:19 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint