default search action
Miltiadis Allamanis
Person information
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j10]Tomas Geffner, Javier Antorán, Adam Foster, Wenbo Gong, Chao Ma, Emre Kiciman, Amit Sharma, Angus Lamb, Martin Kukla, Nick Pawlowski, Agrin Hilmkil, Joel Jennings, Meyer Scetbon, Miltiadis Allamanis, Cheng Zhang:
Deep End-to-end Causal Inference. Trans. Mach. Learn. Res. 2024 (2024) - [c37]Miltiadis Allamanis, Sheena Panthaplackel, Pengcheng Yin:
Unsupervised Evaluation of Code LLMs with Round-Trip Correctness. ICML 2024 - [c36]Ashish Hooda, Mihai Christodorescu, Miltiadis Allamanis, Aaron Wilson, Kassem Fawaz, Somesh Jha:
Do Large Code Models Understand Programming Concepts? Counterfactual Analysis for Code Predicates. ICML 2024 - [c35]Ansong Ni, Miltiadis Allamanis, Arman Cohan, Yinlin Deng, Kensen Shi, Charles Sutton, Pengcheng Yin:
NExT: Teaching Large Language Models to Reason about Code Execution. ICML 2024 - [i38]Ashish Hooda, Mihai Christodorescu, Miltiadis Allamanis, Aaron Wilson, Kassem Fawaz, Somesh Jha:
Do Large Code Models Understand Programming Concepts? A Black-box Approach. CoRR abs/2402.05980 (2024) - [i37]Miltiadis Allamanis, Sheena Panthaplackel, Pengcheng Yin:
Unsupervised Evaluation of Code LLMs with Round-Trip Correctness. CoRR abs/2402.08699 (2024) - [i36]Ansong Ni, Miltiadis Allamanis, Arman Cohan, Yinlin Deng, Kensen Shi, Charles Sutton, Pengcheng Yin:
NExT: Teaching Large Language Models to Reason about Code Execution. CoRR abs/2404.14662 (2024) - 2023
- [j9]Anjan Karmakar, Miltiadis Allamanis, Romain Robbes:
JEMMA: An extensible Java dataset for ML4Code applications. Empir. Softw. Eng. 28(2): 54 (2023) - [j8]Luke Dramko, Jeremy Lacomis, Pengcheng Yin, Edward J. Schwartz, Miltiadis Allamanis, Graham Neubig, Bogdan Vasilescu, Claire Le Goues:
DIRE and its Data: Neural Decompiled Variable Renamings with Respect to Software Class. ACM Trans. Softw. Eng. Methodol. 32(2): 39:1-39:34 (2023) - [c34]Xiaoyu Liu, Jinu Jang, Neel Sundaresan, Miltiadis Allamanis, Alexey Svyatkovskiy:
AdaptivePaste: Intelligent Copy-Paste in IDE. ESEC/SIGSOFT FSE 2023: 1844-1854 - [i35]Miltiadis Allamanis, Earl T. Barr:
Epicure: Distilling Sequence Model Predictions into Patterns. CoRR abs/2308.08203 (2023) - 2022
- [j7]Foivos Tsimpourlas, Gwenyth Rooijackers, Ajitha Rajan, Miltiadis Allamanis:
Embedding and classifying test execution traces using neural networks. IET Softw. 16(3): 301-316 (2022) - [j6]Yuhao Zhang, Yasharth Bajpai, Priyanshu Gupta, Ameya Ketkar, Miltiadis Allamanis, Titus Barik, Sumit Gulwani, Arjun Radhakrishna, Mohammad Raza, Gustavo Soares, Ashish Tiwari:
Overwatch: learning patterns in code edit sequences. Proc. ACM Program. Lang. 6(OOPSLA2): 395-423 (2022) - [j5]Dobrik Georgiev, Marc Brockschmidt, Miltiadis Allamanis:
HEAT: Hyperedge Attention Networks. Trans. Mach. Learn. Res. 2022 (2022) - [j4]Saikat Chakraborty, Yangruibo Ding, Miltiadis Allamanis, Baishakhi Ray:
CODIT: Code Editing With Tree-Based Neural Models. IEEE Trans. Software Eng. 48(4): 1385-1399 (2022) - [c33]Daya Guo, Alexey Svyatkovskiy, Jian Yin, Nan Duan, Marc Brockschmidt, Miltiadis Allamanis:
Learning to Complete Code with Sketches. ICLR 2022 - [c32]Jooyeon Kim, Angus Lamb, Simon Woodhead, Simon Peyton Jones, Cheng Zhang, Miltiadis Allamanis:
CoRGi: Content-Rich Graph Neural Networks with Attention. KDD 2022: 773-783 - [c31]Shushan Arakelyan, Anna Hakhverdyan, Miltiadis Allamanis, Luis Garcia, Christophe Hauser, Xiang Ren:
NS3: Neuro-symbolic Semantic Code Search. NeurIPS 2022 - [c30]Pablo Morales-Alvarez, Wenbo Gong, Angus Lamb, Simon Woodhead, Simon Peyton Jones, Nick Pawlowski, Miltiadis Allamanis, Cheng Zhang:
Simultaneous Missing Value Imputation and Structure Learning with Groups. NeurIPS 2022 - [i34]Dobrik Georgiev, Marc Brockschmidt, Miltiadis Allamanis:
HEAT: Hyperedge Attention Networks. CoRR abs/2201.12113 (2022) - [i33]Tomas Geffner, Javier Antorán, Adam Foster, Wenbo Gong, Chao Ma, Emre Kiciman, Amit Sharma, Angus Lamb, Martin Kukla, Nick Pawlowski, Miltiadis Allamanis, Cheng Zhang:
Deep End-to-end Causal Inference. CoRR abs/2202.02195 (2022) - [i32]James Caddy, Markus Wagner, Christoph Treude, Earl T. Barr, Miltiadis Allamanis:
Is Surprisal in Issue Trackers Actionable? CoRR abs/2204.07363 (2022) - [i31]Shushan Arakelyan, Anna Hakhverdyan, Miltiadis Allamanis, Christophe Hauser, Luis Garcia, Xiang Ren:
NS3: Neuro-Symbolic Semantic Code Search. CoRR abs/2205.10674 (2022) - [i30]Xiaoyu Liu, Jinu Jang, Neel Sundaresan, Miltiadis Allamanis, Alexey Svyatkovskiy:
AdaptivePaste: Code Adaptation through Learning Semantics-aware Variable Usage Representations. CoRR abs/2205.11023 (2022) - [i29]Yuhao Zhang, Yasharth Bajpai, Priyanshu Gupta, Ameya Ketkar, Miltiadis Allamanis, Titus Barik, Sumit Gulwani, Arjun Radhakrishna, Mohammad Raza, Gustavo Soares, Ashish Tiwari:
Overwatch: Learning Patterns in Code Edit Sequences. CoRR abs/2207.12456 (2022) - [i28]Anjan Karmakar, Miltiadis Allamanis, Romain Robbes:
JEMMA: An Extensible Java Dataset for ML4Code Applications. CoRR abs/2212.09132 (2022) - 2021
- [c29]Sheena Panthaplackel, Miltiadis Allamanis, Marc Brockschmidt:
Copy That! Editing Sequences by Copying Spans. AAAI 2021: 13622-13630 - [c28]Alexey Svyatkovskiy, Sebastian Lee, Anna Hadjitofi, Maik Riechert, Juliana Vicente Franco, Miltiadis Allamanis:
Fast and Memory-Efficient Neural Code Completion. MSR 2021: 329-340 - [c27]Miltiadis Allamanis, Henry Jackson-Flux, Marc Brockschmidt:
Self-Supervised Bug Detection and Repair. NeurIPS 2021: 27865-27876 - [c26]Foivos Tsimpourlas, Ajitha Rajan, Miltiadis Allamanis:
Supervised learning over test executions as a test oracle. SAC 2021: 1521-1531 - [i27]Miltiadis Allamanis, Henry Jackson-Flux, Marc Brockschmidt:
Self-Supervised Bug Detection and Repair. CoRR abs/2105.12787 (2021) - [i26]Daya Guo, Alexey Svyatkovskiy, Jian Yin, Nan Duan, Marc Brockschmidt, Miltiadis Allamanis:
Learning to Generate Code Sketches. CoRR abs/2106.10158 (2021) - [i25]Jooyeon Kim, Angus Lamb, Simon Woodhead, Simon Peyton Jones, Cheng Zheng, Miltiadis Allamanis:
CoRGi: Content-Rich Graph Neural Networks with Attention. CoRR abs/2110.04866 (2021) - [i24]Pablo Morales-Alvarez, Angus Lamb, Simon Woodhead, Simon Peyton Jones, Miltiadis Allamanis, Cheng Zhang:
VICause: Simultaneous Missing Value Imputation and Causal Discovery with Groups. CoRR abs/2110.08223 (2021) - 2020
- [c25]Miltiadis Allamanis, Earl T. Barr, Soline Ducousso, Zheng Gao:
Typilus: neural type hints. PLDI 2020: 91-105 - [c24]Profir-Petru Pârtachi, Santanu Kumar Dash, Miltiadis Allamanis, Earl T. Barr:
Flexeme: untangling commits using lexical flows. ESEC/SIGSOFT FSE 2020: 63-74 - [i23]Foivos Tsimpourlas, Ajitha Rajan, Miltiadis Allamanis:
Learning to Encode and Classify Test Executions. CoRR abs/2001.02444 (2020) - [i22]Miltiadis Allamanis, Earl T. Barr, Soline Ducousso, Zheng Gao:
Typilus: Neural Type Hints. CoRR abs/2004.10657 (2020) - [i21]Alexey Svyatkovskiy, Sebastian Lee, Anna Hadjitofi, Maik Riechert, Juliana Franco, Miltiadis Allamanis:
Fast and Memory-Efficient Neural Code Completion. CoRR abs/2004.13651 (2020) - [i20]Sheena Panthaplackel, Miltiadis Allamanis, Marc Brockschmidt:
Copy that! Editing Sequences by Copying Spans. CoRR abs/2006.04771 (2020)
2010 – 2019
- 2019
- [c23]Marc Brockschmidt, Miltiadis Allamanis, Alexander L. Gaunt, Oleksandr Polozov:
Generative Code Modeling with Graphs. ICLR (Poster) 2019 - [c22]Patrick Fernandes, Miltiadis Allamanis, Marc Brockschmidt:
Structured Neural Summarization. ICLR (Poster) 2019 - [c21]Pengcheng Yin, Graham Neubig, Miltiadis Allamanis, Marc Brockschmidt, Alexander L. Gaunt:
Learning to Represent Edits. ICLR (Poster) 2019 - [c20]Matthew Danish, Miltiadis Allamanis, Marc Brockschmidt, Andrew C. Rice, Dominic Orchard:
Learning units-of-measure from scientific code. SE4Science@ICSE 2019: 43-46 - [c19]Jeremy Lacomis, Pengcheng Yin, Edward J. Schwartz, Miltiadis Allamanis, Claire Le Goues, Graham Neubig, Bogdan Vasilescu:
DIRE: A Neural Approach to Decompiled Identifier Naming. ASE 2019: 628-639 - [c18]Eui Chul Richard Shin, Miltiadis Allamanis, Marc Brockschmidt, Alex Polozov:
Program Synthesis and Semantic Parsing with Learned Code Idioms. NeurIPS 2019: 10824-10834 - [c17]Miltiadis Allamanis:
The adverse effects of code duplication in machine learning models of code. Onward! 2019: 143-153 - [d1]Miltiadis Allamanis:
Deduplication Index for Big Code Datasets. IEEE DataPort, 2019 - [i19]Richard Shin, Miltiadis Allamanis, Marc Brockschmidt, Oleksandr Polozov:
Program Synthesis and Semantic Parsing with Learned Code Idioms. CoRR abs/1906.10816 (2019) - [i18]Jeremy Lacomis, Pengcheng Yin, Edward J. Schwartz, Miltiadis Allamanis, Claire Le Goues, Graham Neubig, Bogdan Vasilescu:
DIRE: A Neural Approach to Decompiled Identifier Naming. CoRR abs/1909.09029 (2019) - [i17]Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, Marc Brockschmidt:
CodeSearchNet Challenge: Evaluating the State of Semantic Code Search. CoRR abs/1909.09436 (2019) - 2018
- [j3]Miltiadis Allamanis, Earl T. Barr, Premkumar T. Devanbu, Charles Sutton:
A Survey of Machine Learning for Big Code and Naturalness. ACM Comput. Surv. 51(4): 81:1-81:37 (2018) - [j2]Miltiadis Allamanis, Earl T. Barr, Christian Bird, Premkumar T. Devanbu, Mark Marron, Charles Sutton:
Mining Semantic Loop Idioms. IEEE Trans. Software Eng. 44(7): 651-668 (2018) - [c16]Miltiadis Allamanis, Marc Brockschmidt, Mahmoud Khademi:
Learning to Represent Programs with Graphs. ICLR 2018 - [c15]Graham Neubig, Miltiadis Allamanis:
Modelling Natural Language, Programs, and their Intersection. NAACL-HLT (Tutorial Abstracts) 2018: 1-3 - [c14]Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, Alexander L. Gaunt:
Constrained Graph Variational Autoencoders for Molecule Design. NeurIPS 2018: 7806-7815 - [c13]Santanu Kumar Dash, Miltiadis Allamanis, Earl T. Barr:
RefiNym: using names to refine types. ESEC/SIGSOFT FSE 2018: 107-117 - [c12]Vincent J. Hellendoorn, Christian Bird, Earl T. Barr, Miltiadis Allamanis:
Deep learning type inference. ESEC/SIGSOFT FSE 2018: 152-162 - [i16]Marc Brockschmidt, Miltiadis Allamanis, Alexander L. Gaunt, Oleksandr Polozov:
Generative Code Modeling with Graphs. CoRR abs/1805.08490 (2018) - [i15]Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, Alexander L. Gaunt:
Constrained Graph Variational Autoencoders for Molecule Design. CoRR abs/1805.09076 (2018) - [i14]Saikat Chakraborty, Miltiadis Allamanis, Baishakhi Ray:
Tree2Tree Neural Translation Model for Learning Source Code Changes. CoRR abs/1810.00314 (2018) - [i13]Pengcheng Yin, Graham Neubig, Miltiadis Allamanis, Marc Brockschmidt, Alexander L. Gaunt:
Learning to Represent Edits. CoRR abs/1810.13337 (2018) - [i12]Patrick Fernandes, Miltiadis Allamanis, Marc Brockschmidt:
Structured Neural Summarization. CoRR abs/1811.01824 (2018) - [i11]Miltiadis Allamanis:
The Adverse Effects of Code Duplication in Machine Learning Models of Code. CoRR abs/1812.06469 (2018) - 2017
- [b1]Miltiadis Allamanis:
Learning natural coding conventions. University of Edinburgh, UK, 2017 - [j1]Jaroslav M. Fowkes, Pankajan Chanthirasegaran, Razvan Ranca, Miltiadis Allamanis, Mirella Lapata, Charles Sutton:
Autofolding for Source Code Summarization. IEEE Trans. Software Eng. 43(12): 1095-1109 (2017) - [c11]Miltiadis Allamanis, Pankajan Chanthirasegaran, Pushmeet Kohli, Charles Sutton:
Learning Continuous Semantic Representations of Symbolic Expressions. ICML 2017: 80-88 - [i10]Miltiadis Allamanis, Marc Brockschmidt:
SmartPaste: Learning to Adapt Source Code. CoRR abs/1705.07867 (2017) - [i9]Miltiadis Allamanis, Earl T. Barr, Premkumar T. Devanbu, Charles Sutton:
A Survey of Machine Learning for Big Code and Naturalness. CoRR abs/1709.06182 (2017) - [i8]Miltiadis Allamanis, Marc Brockschmidt, Mahmoud Khademi:
Learning to Represent Programs with Graphs. CoRR abs/1711.00740 (2017) - 2016
- [c10]Miltiadis Allamanis, Hao Peng, Charles Sutton:
A Convolutional Attention Network for Extreme Summarization of Source Code. ICML 2016: 2091-2100 - [c9]Jaroslav M. Fowkes, Pankajan Chanthirasegaran, Razvan Ranca, Miltiadis Allamanis, Mirella Lapata, Charles Sutton:
TASSAL: autofolding for source code summarization. ICSE (Companion Volume) 2016: 649-652 - [i7]Miltiadis Allamanis, Hao Peng, Charles Sutton:
A Convolutional Attention Network for Extreme Summarization of Source Code. CoRR abs/1602.03001 (2016) - [i6]Miltiadis Allamanis, Pankajan Chanthirasegaran, Pushmeet Kohli, Charles Sutton:
Learning Continuous Semantic Representations of Symbolic Expressions. CoRR abs/1611.01423 (2016) - [i5]Miltiadis Allamanis, Earl T. Barr, René Just, Charles Sutton:
Tailored Mutants Fit Bugs Better. CoRR abs/1611.02516 (2016) - 2015
- [c8]Miltiadis Allamanis, Daniel Tarlow, Andrew D. Gordon, Yi Wei:
Bimodal Modelling of Source Code and Natural Language. ICML 2015: 2123-2132 - [c7]Miltiadis Allamanis, Earl T. Barr, Christian Bird, Charles Sutton:
Suggesting accurate method and class names. ESEC/SIGSOFT FSE 2015: 38-49 - [i4]Fani A. Tzima, Miltiadis Allamanis, Alexandros Filotheou, Pericles A. Mitkas:
Inducing Generalized Multi-Label Rules with Learning Classifier Systems. CoRR abs/1512.07982 (2015) - 2014
- [c6]Miltiadis Allamanis, Earl T. Barr, Christian Bird, Charles Sutton:
Learning natural coding conventions. SIGSOFT FSE 2014: 281-293 - [c5]Miltiadis Allamanis, Charles Sutton:
Mining idioms from source code. SIGSOFT FSE 2014: 472-483 - [i3]Miltiadis Allamanis, Earl T. Barr, Charles Sutton:
Learning Natural Coding Conventions. CoRR abs/1402.4182 (2014) - [i2]Jaroslav M. Fowkes, Razvan Ranca, Miltiadis Allamanis, Mirella Lapata, Charles Sutton:
Autofolding for Source Code Summarization. CoRR abs/1403.4503 (2014) - [i1]Miltiadis Allamanis, Charles Sutton:
Mining Idioms from Source Code. CoRR abs/1404.0417 (2014) - 2013
- [c4]Miltiadis Allamanis, Fani A. Tzima, Pericles A. Mitkas:
Effective Rule-Based Multi-label Classification with Learning Classifier Systems. ICANNGA 2013: 466-476 - [c3]Miltiadis Allamanis, Charles Sutton:
Why, when, and what: analyzing stack overflow questions by topic, type, and code. MSR 2013: 53-56 - [c2]Miltiadis Allamanis, Charles Sutton:
Mining source code repositories at massive scale using language modeling. MSR 2013: 207-216 - 2012
- [c1]Miltiadis Allamanis, Salvatore Scellato, Cecilia Mascolo:
Evolution of a location-based online social network: analysis and models. Internet Measurement Conference 2012: 145-158
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 22:06 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint