default search action
Amir Globerson
Person information
- affiliation: Hebrew University of Jerusalem, Israel
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j9]Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson, Mor Geva:
Evaluating the Ripple Effects of Knowledge Editing in Language Models. Trans. Assoc. Comput. Linguistics 12: 283-298 (2024) - [c114]Maya Bechler-Speicher, Amir Globerson, Ran Gilad-Bachrach:
TREE-G: Decision Trees Contesting Graph Neural Networks. AAAI 2024: 11032-11042 - [c113]Alberto Hojel, Yutong Bai, Trevor Darrell, Amir Globerson, Amir Bar:
Finding Visual Task Vectors. ECCV (43) 2024: 257-273 - [c112]Eden Biran, Daniela Gottesman, Sohee Yang, Mor Geva, Amir Globerson:
Hopping Too Late: Exploring the Limitations of Large Language Models on Multi-Hop Queries. EMNLP 2024: 14113-14130 - [c111]Amir Bar, Florian Bordes, Assaf Shocher, Mido Assran, Pascal Vincent, Nicolas Ballas, Trevor Darrell, Amir Globerson, Yann LeCun:
Stochastic positional embeddings improve masked image modeling. ICML 2024 - [c110]Maya Bechler-Speicher, Ido Amos, Ran Gilad-Bachrach, Amir Globerson:
Graph Neural Networks Use Graphs When They Shouldn't. ICML 2024 - [c109]Noam Razin, Yotam Alexander, Edo Cohen-Karlik, Raja Giryes, Amir Globerson, Nadav Cohen:
Implicit Bias of Policy Gradient in Linear Quadratic Control: Extrapolation to Unseen Initial States. ICML 2024 - [c108]Roei Herzig, Ofir Abramovich, Elad Ben-Avraham, Assaf Arbelle, Leonid Karlinsky, Ariel Shamir, Trevor Darrell, Amir Globerson:
PromptonomyViT: Multi-Task Prompt Learning Improves Video Transformers using Synthetic Scene Data. WACV 2024: 6789-6801 - [i79]Noam Razin, Yotam Alexander, Edo Cohen-Karlik, Raja Giryes, Amir Globerson, Nadav Cohen:
Implicit Bias of Policy Gradient in Linear Quadratic Control: Extrapolation to Unseen Initial States. CoRR abs/2402.07875 (2024) - [i78]Alberto Hojel, Yutong Bai, Trevor Darrell, Amir Globerson, Amir Bar:
Finding Visual Task Vectors. CoRR abs/2404.05729 (2024) - [i77]Amir Bar, Arya Bakhtiar, Danny Tran, Antonio Loquercio, Jathushan Rajasegaran, Yann LeCun, Amir Globerson, Trevor Darrell:
EgoPet: Egomotion and Interaction Data from an Animal's Perspective. CoRR abs/2404.09991 (2024) - [i76]R. Alex Hofer, Joshua Maynez, Bhuwan Dhingra, Adam Fisch, Amir Globerson, William W. Cohen:
Bayesian Prediction-Powered Inference. CoRR abs/2405.06034 (2024) - [i75]Maya Bechler-Speicher, Amir Globerson, Ran Gilad-Bachrach:
The Intelligible and Effective Graph Neural Additive Networks. CoRR abs/2406.01317 (2024) - [i74]Avi Caciularu, Alon Jacovi, Eyal Ben-David, Sasha Goldshtein, Tal Schuster, Jonathan Herzig, Gal Elidan, Amir Globerson:
TACT: Advancing Complex Aggregative Reasoning with Information Extraction Tools. CoRR abs/2406.03618 (2024) - [i73]Adam Fisch, Joshua Maynez, R. Alex Hofer, Bhuwan Dhingra, Amir Globerson, William W. Cohen:
Stratified Prediction-Powered Inference for Hybrid Language Model Evaluation. CoRR abs/2406.04291 (2024) - [i72]Eden Biran, Daniela Gottesman, Sohee Yang, Mor Geva, Amir Globerson:
Hopping Too Late: Exploring the Limitations of Large Language Models on Multi-Hop Queries. CoRR abs/2406.12775 (2024) - [i71]Assaf Ben-Kish, Itamar Zimerman, Shady Abu-Hussein, Nadav Cohen, Amir Globerson, Lior Wolf, Raja Giryes:
DeciMamba: Exploring the Length Extrapolation Potential of Mamba. CoRR abs/2406.14528 (2024) - [i70]Naama Rozen, Gal Elidan, Amir Globerson, Ella Daniel:
Do LLMs have Consistent Values? CoRR abs/2407.12878 (2024) - [i69]Gilad Yehudai, Haim Kaplan, Asma Ghandeharioun, Mor Geva, Amir Globerson:
When Can Transformers Count to n? CoRR abs/2407.15160 (2024) - [i68]Nitzan Bitton Guetta, Aviv Slobodkin, Aviya Maimon, Eliya Habba, Royi Rassin, Yonatan Bitton, Idan Szpektor, Amir Globerson, Yuval Elovici:
Visual Riddles: a Commonsense and World Knowledge Challenge for Large Vision and Language Models. CoRR abs/2407.19474 (2024) - [i67]Yuval Ran-Milo, Eden Lumbroso, Edo Cohen-Karlik, Raja Giryes, Amir Globerson, Nadav Cohen:
Provable Benefits of Complex Parameterizations for Structured State Space Models. CoRR abs/2410.14067 (2024) - 2023
- [c107]Roni Rabin, Alexandre Djerbetian, Roee Engelberg, Lidan Hackmon, Gal Elidan, Reut Tsarfaty, Amir Globerson:
Covering Uncommon Ground: Gap-Focused Question Generation for Answer Assessment. ACL (2) 2023: 215-227 - [c106]Ori Ram, Liat Bezalel, Adi Zicher, Yonatan Belinkov, Jonathan Berant, Amir Globerson:
What Are You Token About? Dense Retrieval as Distributions Over the Vocabulary. ACL (1) 2023: 2481-2498 - [c105]Roi Cohen, Mor Geva, Jonathan Berant, Amir Globerson:
Crawling The Internal Knowledge-Base of Language Models. EACL (Findings) 2023: 1811-1824 - [c104]Roee Hendel, Mor Geva, Amir Globerson:
In-Context Learning Creates Task Vectors. EMNLP (Findings) 2023: 9318-9333 - [c103]Mor Geva, Jasmijn Bastings, Katja Filippova, Amir Globerson:
Dissecting Recall of Factual Associations in Auto-Regressive Language Models. EMNLP 2023: 12216-12235 - [c102]Roi Cohen, May Hamri, Mor Geva, Amir Globerson:
LM vs LM: Detecting Factual Errors via Cross Examination. EMNLP 2023: 12621-12640 - [c101]Roei Herzig, Alon Mendelson, Leonid Karlinsky, Assaf Arbelle, Rogério Feris, Trevor Darrell, Amir Globerson:
Incorporating Structured Representations into Pretrained Vision & Language Models Using Scene Graphs. EMNLP 2023: 14077-14098 - [c100]Edo Cohen-Karlik, Itamar Menuhin-Gruman, Raja Giryes, Nadav Cohen, Amir Globerson:
Learning Low Dimensional State Spaces with Overparameterized Recurrent Neural Nets. ICLR 2023 - [e3]Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, Sergey Levine:
Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023. 2023 [contents] - [i66]Roi Cohen, Mor Geva, Jonathan Berant, Amir Globerson:
Crawling the Internal Knowledge-Base of Language Models. CoRR abs/2301.12810 (2023) - [i65]Mor Geva, Jasmijn Bastings, Katja Filippova, Amir Globerson:
Dissecting Recall of Factual Associations in Auto-Regressive Language Models. CoRR abs/2304.14767 (2023) - [i64]Roei Herzig, Alon Mendelson, Leonid Karlinsky, Assaf Arbelle, Rogério Feris, Trevor Darrell, Amir Globerson:
Incorporating Structured Representations into Pretrained Vision & Language Models Using Scene Graphs. CoRR abs/2305.06343 (2023) - [i63]Roi Cohen, May Hamri, Mor Geva, Amir Globerson:
LM vs LM: Detecting Factual Errors via Cross Examination. CoRR abs/2305.13281 (2023) - [i62]Roni Rabin, Alexandre Djerbetian, Roee Engelberg, Lidan Hackmon, Gal Elidan, Reut Tsarfaty, Amir Globerson:
Covering Uncommon Ground: Gap-Focused Question Generation for Answer Assessment. CoRR abs/2307.03319 (2023) - [i61]Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson, Mor Geva:
Evaluating the Ripple Effects of Knowledge Editing in Language Models. CoRR abs/2307.12976 (2023) - [i60]Amir Bar, Florian Bordes, Assaf Shocher, Mahmoud Assran, Pascal Vincent, Nicolas Ballas, Trevor Darrell, Amir Globerson, Yann LeCun:
Predicting masked tokens in stochastic locations improves masked image modeling. CoRR abs/2308.00566 (2023) - [i59]Maya Bechler-Speicher, Ido Amos, Ran Gilad-Bachrach, Amir Globerson:
Graph Neural Networks Use Graphs When They Shouldn't. CoRR abs/2309.04332 (2023) - [i58]Roee Hendel, Mor Geva, Amir Globerson:
In-Context Learning Creates Task Vectors. CoRR abs/2310.15916 (2023) - 2022
- [c99]Edo Cohen-Karlik, Avichai Ben David, Nadav Cohen, Amir Globerson:
On the Implicit Bias of Gradient Descent for Temporal Extrapolation. AISTATS 2022: 10966-10981 - [c98]Roei Herzig, Elad Ben-Avraham, Karttikeya Mangalam, Amir Bar, Gal Chechik, Anna Rohrbach, Trevor Darrell, Amir Globerson:
Object-Region Video Transformers. CVPR 2022: 3138-3149 - [c97]Amir Bar, Xin Wang, Vadim Kantorov, Colorado J. Reed, Roei Herzig, Gal Chechik, Anna Rohrbach, Trevor Darrell, Amir Globerson:
DETReg: Unsupervised Pretraining with Region Priors for Object Detection. CVPR 2022: 14585-14595 - [c96]David Nukrai, Ron Mokady, Amir Globerson:
Text-Only Training for Image Captioning using Noise-Injected CLIP. EMNLP (Findings) 2022: 4055-4063 - [c95]Alon Brutzkus, Amir Globerson, Eran Malach, Alon Regev Netser, Shai Shalev-Shwartz:
Efficient Learning of CNNs using Patch Based Features. ICML 2022: 2336-2356 - [c94]Ori Ram, Gal Shachaf, Omer Levy, Jonathan Berant, Amir Globerson:
Learning to Retrieve Passages without Supervision. NAACL-HLT 2022: 2687-2700 - [c93]Amir Bar, Yossi Gandelsman, Trevor Darrell, Amir Globerson, Alexei A. Efros:
Visual Prompting via Image Inpainting. NeurIPS 2022 - [c92]Elad Ben-Avraham, Roei Herzig, Karttikeya Mangalam, Amir Bar, Anna Rohrbach, Leonid Karlinsky, Trevor Darrell, Amir Globerson:
Bringing Image Scene Structure to Video via Frame-Clip Consistency of Object Tokens. NeurIPS 2022 - [c91]Ido Bronstein, Alon Brutzkus, Amir Globerson:
On the inductive bias of neural networks for learning read-once DNFs. UAI 2022: 255-265 - [c90]Gal Yona, Shay Moran, Gal Elidan, Amir Globerson:
Active learning with label comparisons. UAI 2022: 2289-2298 - [i57]Edo Cohen-Karlik, Avichai Ben David, Nadav Cohen, Amir Globerson:
On the Implicit Bias of Gradient Descent for Temporal Extrapolation. CoRR abs/2202.04302 (2022) - [i56]Gal Yona, Shay Moran, Gal Elidan, Amir Globerson:
Active Learning with Label Comparisons. CoRR abs/2204.04670 (2022) - [i55]Elad Ben-Avraham, Roei Herzig, Karttikeya Mangalam, Amir Bar, Anna Rohrbach, Leonid Karlinsky, Trevor Darrell, Amir Globerson:
Bringing Image Scene Structure to Video via Frame-Clip Consistency of Object Tokens. CoRR abs/2206.06346 (2022) - [i54]Elad Ben-Avraham, Roei Herzig, Karttikeya Mangalam, Amir Bar, Anna Rohrbach, Leonid Karlinsky, Trevor Darrell, Amir Globerson:
Structured Video Tokens @ Ego4D PNR Temporal Localization Challenge 2022. CoRR abs/2206.07689 (2022) - [i53]Maya Bechler-Speicher, Amir Globerson, Ran Gilad-Bachrach:
Graph Trees with Attention. CoRR abs/2207.02760 (2022) - [i52]Amir Bar, Yossi Gandelsman, Trevor Darrell, Amir Globerson, Alexei A. Efros:
Visual Prompting via Image Inpainting. CoRR abs/2209.00647 (2022) - [i51]Edo Cohen-Karlik, Itamar Menuhin-Gruman, Nadav Cohen, Raja Giryes, Amir Globerson:
Learning Low Dimensional State Spaces with Overparameterized Recurrent Neural Network. CoRR abs/2210.14064 (2022) - [i50]David Nukrai, Ron Mokady, Amir Globerson:
Text-Only Training for Image Captioning using Noise-Injected CLIP. CoRR abs/2211.00575 (2022) - [i49]Roei Herzig, Ofir Abramovich, Elad Ben-Avraham, Assaf Arbelle, Leonid Karlinsky, Ariel Shamir, Trevor Darrell, Amir Globerson:
PromptonomyViT: Multi-Task Prompt Learning Improves Video Transformers using Synthetic Scene Data. CoRR abs/2212.04821 (2022) - [i48]Ori Ram, Liat Bezalel, Adi Zicher, Yonatan Belinkov, Jonathan Berant, Amir Globerson:
What Are You Token About? Dense Retrieval as Distributions Over the Vocabulary. CoRR abs/2212.10380 (2022) - 2021
- [c89]Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy:
Few-Shot Question Answering by Pretraining Span Selection. ACL/IJCNLP (1) 2021: 3066-3079 - [c88]Adi Haviv, Jonathan Berant, Amir Globerson:
BERTese: Learning to Speak to BERT. EACL 2021: 3618-3623 - [c87]Oran Lang, Yossi Gandelsman, Michal Yarom, Yoav Wald, Gal Elidan, Avinatan Hassidim, William T. Freeman, Phillip Isola, Amir Globerson, Michal Irani, Inbar Mosseri:
Explaining in Style: Training a GAN to explain a classifier in StyleSpace. ICCV 2021: 673-682 - [c86]Shahar Azulay, Edward Moroshko, Mor Shpigel Nacson, Blake E. Woodworth, Nathan Srebro, Amir Globerson, Daniel Soudry:
On the Implicit Bias of Initialization Shape: Beyond Infinitesimal Mirror Descent. ICML 2021: 468-477 - [c85]Amir Bar, Roei Herzig, Xiaolong Wang, Anna Rohrbach, Gal Chechik, Trevor Darrell, Amir Globerson:
Compositional Video Synthesis with Action Graphs. ICML 2021: 662-673 - [c84]Roei Sarussi, Alon Brutzkus, Amir Globerson:
Towards Understanding Learning in Neural Networks with Linear Teachers. ICML 2021: 9313-9322 - [c83]Gal Shachaf, Alon Brutzkus, Amir Globerson:
A Theoretical Analysis of Fine-tuning with Linear Teachers. NeurIPS 2021: 15382-15394 - [c82]Alon Brutzkus, Amir Globerson:
An optimization and generalization analysis for max-pooling networks. UAI 2021: 1650-1660 - [i47]Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy:
Few-Shot Question Answering by Pretraining Span Selection. CoRR abs/2101.00438 (2021) - [i46]Roei Sarussi, Alon Brutzkus, Amir Globerson:
Towards Understanding Learning in Neural Networks with Linear Teachers. CoRR abs/2101.02533 (2021) - [i45]Shahar Azulay, Edward Moroshko, Mor Shpigel Nacson, Blake E. Woodworth, Nathan Srebro, Amir Globerson, Daniel Soudry:
On the Implicit Bias of Initialization Shape: Beyond Infinitesimal Mirror Descent. CoRR abs/2102.09769 (2021) - [i44]Adi Haviv, Jonathan Berant, Amir Globerson:
BERTese: Learning to Speak to BERT. CoRR abs/2103.05327 (2021) - [i43]Oran Lang, Yossi Gandelsman, Michal Yarom, Yoav Wald, Gal Elidan, Avinatan Hassidim, William T. Freeman, Phillip Isola, Amir Globerson, Michal Irani, Inbar Mosseri:
Explaining in Style: Training a GAN to explain a classifier in StyleSpace. CoRR abs/2104.13369 (2021) - [i42]Amir Bar, Xin Wang, Vadim Kantorov, Colorado J. Reed, Roei Herzig, Gal Chechik, Anna Rohrbach, Trevor Darrell, Amir Globerson:
DETReg: Unsupervised Pretraining with Region Priors for Object Detection. CoRR abs/2106.04550 (2021) - [i41]Gal Shachaf, Alon Brutzkus, Amir Globerson:
A Theoretical Analysis of Fine-tuning with Linear Teachers. CoRR abs/2107.01641 (2021) - [i40]Roei Herzig, Elad Ben-Avraham, Karttikeya Mangalam, Amir Bar, Gal Chechik, Anna Rohrbach, Trevor Darrell, Amir Globerson:
Object-Region Video Transformers. CoRR abs/2110.06915 (2021) - [i39]Alon Itai, Amir Globerson, Ami Wiesel:
On the Optimization Landscape of Maximum Mean Discrepancy. CoRR abs/2110.13452 (2021) - [i38]Ori Ram, Gal Shachaf, Omer Levy, Jonathan Berant, Amir Globerson:
Learning to Retrieve Passages without Supervision. CoRR abs/2112.07708 (2021) - 2020
- [c81]Aviv Shamsian, Ofri Kleinfeld, Amir Globerson, Gal Chechik:
Learning Object Permanence from Video. ECCV (16) 2020: 35-50 - [c80]Roei Herzig, Amir Bar, Huijuan Xu, Gal Chechik, Trevor Darrell, Amir Globerson:
Learning Canonical Representations for Scene Graph to Image Generation. ECCV (26) 2020: 210-227 - [c79]Elad Segal, Avia Efrat, Mor Shoham, Amir Globerson, Jonathan Berant:
A Simple and Effective Model for Answering Multi-span Questions. EMNLP (1) 2020: 3074-3080 - [c78]Yuval Varkel, Amir Globerson:
Pre-training Mention Representations in Coreference Models. EMNLP (1) 2020: 8534-8540 - [c77]Roy Mor, Erez Peterfreund, Matan Gavish, Amir Globerson:
Optimal Strategies Against Generative Attacks. ICLR 2020 - [c76]Edo Cohen-Karlik, Avichai Ben David, Amir Globerson:
Regularizing Towards Permutation Invariance In Recurrent Models. NeurIPS 2020 - [c75]Moshiko Raboh, Roei Herzig, Jonathan Berant, Gal Chechik, Amir Globerson:
Differentiable Scene Graphs. WACV 2020: 1477-1486 - [i37]Alon Brutzkus, Amir Globerson:
On the Inductive Bias of a CNN for Orthogonal Patterns Distributions. CoRR abs/2002.09781 (2020) - [i36]Aviv Shamsian, Ofri Kleinfeld, Amir Globerson, Gal Chechik:
Learning Object Permanence from Video. CoRR abs/2003.10469 (2020) - [i35]Amir Bar, Roei Herzig, Xiaolong Wang, Gal Chechik, Trevor Darrell, Amir Globerson:
Compositional Video Synthesis with Action Graphs. CoRR abs/2006.15327 (2020) - [i34]Shahar Azulay, Lior Raz, Amir Globerson, Tomer Koren, Yehuda Afek:
Holdout SGD: Byzantine Tolerant Federated Learning. CoRR abs/2008.04612 (2020) - [i33]Achiya Jerbi, Roei Herzig, Jonathan Berant, Gal Chechik, Amir Globerson:
Learning Object Detection from Captions via Textual Scene Attributes. CoRR abs/2009.14558 (2020) - [i32]Nisan Chiprut, Amir Globerson, Ami Wiesel:
Maximin Optimization for Binary Regression. CoRR abs/2010.05077 (2020) - [i31]Edo Cohen-Karlik, Avichai Ben David, Amir Globerson:
Regularizing Towards Permutation Invariance in Recurrent Models. CoRR abs/2010.13055 (2020)
2010 – 2019
- 2019
- [c74]Ben Kantor, Amir Globerson:
Coreference Resolution with Entity Equalization. ACL (1) 2019: 673-677 - [c73]Deborah Cohen, Amit Daniely, Amir Globerson, Gal Elidan:
Learning Rules-First Classifiers. AISTATS 2019: 1398-1406 - [c72]Roei Herzig, Elad Levi, Huijuan Xu, Hang Gao, Eli Brosh, Xiaolong Wang, Amir Globerson, Trevor Darrell:
Spatio-Temporal Action Graph Networks. ICCV Workshops 2019: 2347-2356 - [c71]Jonathan Berant, Daniel Deutch, Amir Globerson, Tova Milo, Tomer Wolfson:
Explaining Queries Over Web Tables to Non-experts. ICDE 2019: 1570-1573 - [c70]Alon Brutzkus, Amir Globerson:
Why do Larger Models Generalize Better? A Theoretical Perspective via the XOR Problem. ICML 2019: 822-830 - [c69]Tal Schuster, Ori Ram, Regina Barzilay, Amir Globerson:
Cross-Lingual Alignment of Contextual Word Embeddings, with Applications to Zero-shot Dependency Parsing. NAACL-HLT (1) 2019: 1599-1613 - [e2]Amir Globerson, Ricardo Silva:
Proceedings of the Thirty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI 2019, Tel Aviv, Israel, July 22-25, 2019. Proceedings of Machine Learning Research 115, AUAI Press 2019 [contents] - [i30]Tal Schuster, Ori Ram, Regina Barzilay, Amir Globerson:
Cross-Lingual Alignment of Contextual Word Embeddings, with Applications to Zero-shot Dependency Parsing. CoRR abs/1902.09492 (2019) - [i29]Moshiko Raboh, Roei Herzig, Gal Chechik, Jonathan Berant, Amir Globerson:
Learning Latent Scene-Graph Representations for Referring Relationships. CoRR abs/1902.10200 (2019) - [i28]Roei Herzig, Amir Bar, Huijuan Xu, Gal Chechik, Trevor Darrell, Amir Globerson:
Learning Canonical Representations for Scene Graph to Image Generation. CoRR abs/1912.07414 (2019) - 2018
- [c68]Omer Goldman, Veronica Latcinnik, Ehud Nave, Amir Globerson, Jonathan Berant:
Weakly Supervised Semantic Parsing with Abstract Examples. ACL (1) 2018: 1809-1819 - [c67]Nir Rosenfeld, Amir Globerson:
Semi-Supervised Learning with Competitive Infection Models. AISTATS 2018: 336-346 - [c66]Alon Brutzkus, Amir Globerson, Eran Malach, Shai Shalev-Shwartz:
SGD Learns Over-parameterized Networks that Provably Generalize on Linearly Separable Data. ICLR (Poster) 2018 - [c65]Nataly Brukhim, Amir Globerson:
Predict and Constrain: Modeling Cardinality in Deep Structured Prediction. ICML 2018: 658-666 - [c64]Nir Rosenfeld, Eric Balkanski, Amir Globerson, Yaron Singer:
Learning to Optimize Combinatorial Functions. ICML 2018: 4371-4380 - [c63]Roei Herzig, Moshiko Raboh, Gal Chechik, Jonathan Berant, Amir Globerson:
Mapping Images to Scene Graphs with Permutation-Invariant Structured Prediction. NeurIPS 2018: 7211-7221 - [e1]Amir Globerson, Ricardo Silva:
Proceedings of the Thirty-Fourth Conference on Uncertainty in Artificial Intelligence, UAI 2018, Monterey, California, USA, August 6-10, 2018. AUAI Press 2018 [contents] - [i27]Nataly Brukhim, Amir Globerson:
Predict and Constrain: Modeling Cardinality in Deep Structured Prediction. CoRR abs/1802.04721 (2018) - [i26]Roei Herzig, Moshiko Raboh, Gal Chechik, Jonathan Berant, Amir Globerson:
Mapping Images to Scene Graphs with Permutation-Invariant Structured Prediction. CoRR abs/1802.05451 (2018) - [i25]Deborah Cohen, Amit Daniely, Amir Globerson, Gal Elidan:
Learning with Rules. CoRR abs/1803.03155 (2018) - [i24]Jonathan Berant, Daniel Deutch, Amir Globerson, Tova Milo, Tomer Wolfson:
Explaining Queries over Web Tables to Non-Experts. CoRR abs/1808.04614 (2018) - [i23]Alon Brutzkus, Amir Globerson:
Over-parameterization Improves Generalization in the XOR Detection Problem. CoRR abs/1810.03037 (2018) - [i22]Roei Herzig, Elad Levi, Huijuan Xu, Eli Brosh, Amir Globerson, Trevor Darrell:
Classifying Collisions with Spatio-Temporal Action Graph Networks. CoRR abs/1812.01233 (2018) - 2017
- [c62]Amir Globerson, Roi Livni, Shai Shalev-Shwartz:
Effective Semisupervised Learning on Manifolds. COLT 2017: 978-1003 - [c61]Alon Brutzkus, Amir Globerson:
Globally Optimal Gradient Descent for a ConvNet with Gaussian Inputs. ICML 2017: 605-614 - [c60]Roi Livni, Daniel Carmon, Amir Globerson:
Learning Infinite Layer Networks Without the Kernel Trick. ICML 2017: 2198-2207 - [c59]Yoav Wald, Amir Globerson:
Robust Conditional Probabilities. NIPS 2017: 6359-6368 - [c58]Amir Globerson:
Learning and Inference with Expectations. UAI 2017 - [i21]Alon Brutzkus, Amir Globerson:
Globally Optimal Gradient Descent for a ConvNet with Gaussian Inputs. CoRR abs/1702.07966 (2017) - [i20]Nir Rosenfeld, Amir Globerson:
Semi-Supervised Learning with Competitive Infection Models. CoRR abs/1703.06426 (2017) - [i19]Yoav Wald, Amir Globerson:
Robust Conditional Probabilities. CoRR abs/1708.02406 (2017) - [i18]Alon Brutzkus, Amir Globerson, Eran Malach, Shai Shalev-Shwartz:
SGD Learns Over-parameterized Networks that Provably Generalize on Linearly Separable Data. CoRR abs/1710.10174 (2017) - [i17]Omer Goldman, Veronica Latcinnik, Udi Naveh, Amir Globerson, Jonathan Berant:
Weakly-supervised Semantic Parsing with Abstract Examples. CoRR abs/1711.05240 (2017) - 2016
- [c57]Amir Globerson, Nevena Lazic, Soumen Chakrabarti, Amarnag Subramanya, Michael Ringgaard, Fernando Pereira:
Collective Entity Resolution with Multi-Focal Attention. ACL (1) 2016 - [c56]Uri Heinemann, Roi Livni, Elad Eban, Gal Elidan, Amir Globerson:
Improper Deep Kernels. AISTATS 2016: 1159-1167 - [c55]Nir Rosenfeld, Amir Globerson:
Optimal Tagging with Markov Chain Optimization. NIPS 2016: 1307-1315 - [c54]Nir Rosenfeld, Mor Nitzan, Amir Globerson:
Discriminative Learning of Infection Models. WSDM 2016: 563-572 - [i16]Nir Rosenfeld, Amir Globerson:
Optimal Tagging with Markov Chain Optimization. CoRR abs/1605.04719 (2016) - [i15]Amir Globerson, Roi Livni:
Learning Infinite-Layer Networks: Beyond the Kernel Trick. CoRR abs/1606.05316 (2016) - [i14]Yuval Atzmon, Jonathan Berant, Vahid Kezami, Amir Globerson, Gal Chechik:
Learning to generalize to new compositions in image understanding. CoRR abs/1608.07639 (2016) - 2015
- [j8]Yonatan Belinkov, Tao Lei, Regina Barzilay, Amir Globerson:
Erratum: "Exploring Compositional Architectures and Word Vector Representations for Prepositional Phrase Attachment". Trans. Assoc. Comput. Linguistics 3: 101 (2015) - [c53]Amir Globerson, Tim Roughgarden, David A. Sontag, Cafer Yildirim:
How Hard is Inference for Structured Prediction? ICML 2015: 2181-2190 - [c52]Hillel Taub-Tabib, Yoav Goldberg, Amir Globerson:
Template Kernels for Dependency Parsing. HLT-NAACL 2015: 1422-1427 - 2014
- [j7]Yonatan Belinkov, Tao Lei, Regina Barzilay, Amir Globerson:
Exploring Compositional Architectures and Word Vector Representations for Prepositional Phrase Attachment. Trans. Assoc. Comput. Linguistics 2: 561-572 (2014) - [c51]Yuan Zhang, Tao Lei, Regina Barzilay, Tommi S. Jaakkola, Amir Globerson:
Steps to Excellence: Simple Inference with Refined Scoring of Dependency Trees. ACL (1) 2014: 197-207 - [c50]Martin Mladenov, Kristian Kersting, Amir Globerson:
Efficient Lifting of MAP LP Relaxations Using k-Locality. AISTATS 2014: 623-632 - [c49]Nir Rosenfeld, Ofer Meshi, Daniel Tarlow, Amir Globerson:
Learning Structured Models with the AUC Loss and Its Generalizations. AISTATS 2014: 841-849 - [c48]Elad Eban, Elad Mezuman, Amir Globerson:
Discrete Chebyshev Classifiers. ICML 2014: 1233-1241 - [c47]Uri Heinemann, Amir Globerson:
Inferning with High Girth Graphical Models. ICML 2014: 1260-1268 - [c46]Ariadna Quattoni, Borja Balle, Xavier Carreras, Amir Globerson:
Spectral Regularization for Max-Margin Sequence Tagging. ICML 2014: 1710-1718 - [c45]Martin Mladenov, Amir Globerson, Kristian Kersting:
Lifted Message Passing as Reparametrization of Graphical Models. UAI 2014: 603-612 - [c44]Yoav Wald, Amir Globerson:
Tightness Results for Local Consistency Relaxations in Continuous MRFs. UAI 2014: 839-848 - [i13]Amir Globerson, Tim Roughgarden, David A. Sontag, Cafer Yildirim:
Tight Error Bounds for Structured Prediction. CoRR abs/1409.5834 (2014) - 2013
- [j6]Ami Wiesel, Ofir Bibi, Amir Globerson:
Time Varying Autoregressive Moving Average Models for Covariance Estimation. IEEE Trans. Signal Process. 61(11): 2791-2801 (2013) - [c43]Yuan Zhang, Regina Barzilay, Amir Globerson:
Transfer Learning for Constituency-Based Grammars. ACL (1) 2013: 291-301 - [c42]Chetan Arora, Amir Globerson:
Higher Order Matching for Consistent Multiple Target Tracking. ICCV 2013: 177-184 - [c41]Ofir Pele, Ben Taskar, Amir Globerson, Michael Werman:
The Pairwise Piecewise-Linear Embedding for Efficient Non-Linear Classification. ICML (1) 2013: 205-213 - [c40]Roi Livni, David Lehavi, Sagi Schein, Hila Nachlieli, Shai Shalev-Shwartz, Amir Globerson:
Vanishing Component Analysis. ICML (1) 2013: 597-605 - [c39]Ofer Meshi, Elad Eban, Gal Elidan, Amir Globerson:
Learning Max-Margin Tree Predictors. UAI 2013 - [c38]Elad Mezuman, Daniel Tarlow, Amir Globerson, Yair Weiss:
Tighter Linear Program Relaxations for High Order Graphical Models. UAI 2013 - [i12]Ofer Meshi, Elad Eban, Gal Elidan, Amir Globerson:
Learning Max-Margin Tree Predictors. CoRR abs/1309.6847 (2013) - [i11]Elad Mezuman, Daniel Tarlow, Amir Globerson, Yair Weiss:
Tighter Linear Program Relaxations for High Order Graphical Models. CoRR abs/1309.6848 (2013) - 2012
- [c37]Tahira Naseem, Regina Barzilay, Amir Globerson:
Selective Sharing for Multilingual Dependency Parsing. ACL (1) 2012: 629-637 - [c36]Yuan Zhang, Roi Reichart, Regina Barzilay, Amir Globerson:
Learning to Map into a Universal POS Tagset. EMNLP-CoNLL 2012: 1368-1378 - [c35]Alexander M. Rush, Roi Reichart, Michael Collins, Amir Globerson:
Improved Parsing and POS Tagging Using Inter-Sentence Consistency Constraints. EMNLP-CoNLL 2012: 1434-1444 - [c34]Elad Eban, Aharon Birnbaum, Shai Shalev-Shwartz, Amir Globerson:
Learning the Experts for Online Sequence Prediction. ICML 2012 - [c33]Ami Wiesel, Amir Globerson:
Covariance estimation in time varying ARMA processes. SAM 2012: 357-360 - [c32]Ofer Meshi, Tommi S. Jaakkola, Amir Globerson:
Convergence Rate Analysis of MAP Coordinate Minimization Algorithms. NIPS 2012: 3023-3031 - [c31]Roi Livni, Koby Crammer, Amir Globerson:
A Simple Geometric Interpretation of SVM using Stochastic Adversaries. AISTATS 2012: 722-730 - [i10]Uri Heinemann, Amir Globerson:
What Cannot be Learned with Bethe Approximations. CoRR abs/1202.3731 (2012) - [i9]Ofer Meshi, Ariel Jaimovich, Amir Globerson, Nir Friedman:
Convexifying the Bethe Free Energy. CoRR abs/1205.2624 (2012) - [i8]Talya Meltzer, Amir Globerson, Yair Weiss:
Convergent message passing algorithms - a unifying view. CoRR abs/1205.2625 (2012) - [i7]David A. Sontag, Talya Meltzer, Amir Globerson, Tommi S. Jaakkola, Yair Weiss:
Tightening LP Relaxations for MAP using Message Passing. CoRR abs/1206.3288 (2012) - [i6]Elad Eban, Aharon Birnbaum, Shai Shalev-Shwartz, Amir Globerson:
Learning the Experts for Online Sequence Prediction. CoRR abs/1206.4604 (2012) - [i5]Amir Globerson, Tommi S. Jaakkola:
Convergent Propagation Algorithms via Oriented Trees. CoRR abs/1206.5243 (2012) - [i4]Koby Crammer, Amir Globerson:
Discriminative Learning via Semidefinite Probabilistic Models. CoRR abs/1206.6815 (2012) - [i3]Amir Globerson, Naftali Tishby:
The Minimum Information Principle for Discriminative Learning. CoRR abs/1207.4110 (2012) - [i2]Amir Globerson, Gal Chechik, Naftali Tishby:
Sufficient Dimensionality Reduction with Irrelevant Statistics. CoRR abs/1212.2483 (2012) - 2011
- [c30]Ofer Meshi, Amir Globerson:
An Alternating Direction Method for Dual MAP LP Relaxation. ECML/PKDD (2) 2011: 470-483 - [c29]Uri Heinemann, Amir Globerson:
What Cannot be Learned with Bethe Approximations. UAI 2011: 319-326 - [i1]Ido Ginodi, Amir Globerson:
Gaussian Robust Classification. CoRR abs/1104.0235 (2011) - 2010
- [c28]Ofer Meshi, David A. Sontag, Tommi S. Jaakkola, Amir Globerson:
Learning Efficiently with Approximate Inference via Dual Losses. ICML 2010: 783-790 - [c27]David A. Sontag, Ofer Meshi, Tommi S. Jaakkola, Amir Globerson:
More data means less inference: A pseudo-max approach to structured learning. NIPS 2010: 2181-2189 - [c26]Tommi S. Jaakkola, David A. Sontag, Amir Globerson, Marina Meila:
Learning Bayesian Network Structure using LP Relaxations. AISTATS 2010: 358-365
2000 – 2009
- 2009
- [j5]Amir Globerson, Eran Stark, Eilon Vaadia, Naftali Tishby:
The minimum information principle and its application to neural code analysis. Proc. Natl. Acad. Sci. USA 106(9): 3490-3495 (2009) - [c25]Menachem Fromer, Amir Globerson:
An LP View of the M-best MAP problem. NIPS 2009: 567-575 - [c24]Talya Meltzer, Amir Globerson, Yair Weiss:
Convergent message passing algorithms - a unifying view. UAI 2009: 393-401 - [c23]Ofer Meshi, Ariel Jaimovich, Amir Globerson, Nir Friedman:
Convexifying the Bethe Free Energy. UAI 2009: 402-410 - 2008
- [j4]Michael Collins, Amir Globerson, Terry Koo, Xavier Carreras, Peter L. Bartlett:
Exponentiated Gradient Algorithms for Conditional Random Fields and Max-Margin Markov Networks. J. Mach. Learn. Res. 9: 1775-1822 (2008) - [c22]David A. Sontag, Amir Globerson, Tommi S. Jaakkola:
Clusters and Coarse Partitions in LP Relaxations. NIPS 2008: 1537-1544 - [c21]David A. Sontag, Talya Meltzer, Amir Globerson, Tommi S. Jaakkola, Yair Weiss:
Tightening LP Relaxations for MAP using Message Passing. UAI 2008: 503-510 - 2007
- [j3]Amir Globerson, Gal Chechik, Fernando Pereira, Naftali Tishby:
Euclidean Embedding of Co-occurrence Data. J. Mach. Learn. Res. 8: 2265-2295 (2007) - [c20]Terry Koo, Amir Globerson, Xavier Carreras, Michael Collins:
Structured Prediction Models via the Matrix-Tree Theorem. EMNLP-CoNLL 2007: 141-150 - [c19]Amir Globerson, Terry Koo, Xavier Carreras, Michael Collins:
Exponentiated gradient algorithms for log-linear structured prediction. ICML 2007: 305-312 - [c18]Amir Globerson, Tommi S. Jaakkola:
Fixing Max-Product: Convergent Message Passing Algorithms for MAP LP-Relaxations. NIPS 2007: 553-560 - [c17]Choon Hui Teo, Amir Globerson, Sam T. Roweis, Alexander J. Smola:
Convex Learning with Invariances. NIPS 2007: 1489-1496 - [c16]Amir Globerson, Tommi S. Jaakkola:
Convergent Propagation Algorithms via Oriented Trees. UAI 2007: 133-140 - [c15]Amir Globerson, Tommi S. Jaakkola:
Approximate inference using conditional entropy decompositions. AISTATS 2007: 130-138 - [c14]Amir Globerson, Sam T. Roweis:
Visualizing pairwise similarity via semidefinite programming. AISTATS 2007: 139-146 - 2006
- [c13]Amir Globerson, Gal Chechik, Fernando Pereira, Naftali Tishby:
Embedding Heterogeneous Data Using Statistical Models. AAAI 2006: 1605-1608 - [c12]Amir Globerson, Sam T. Roweis:
Nightmare at test time: robust learning by feature deletion. ICML 2006: 353-360 - [c11]Amir Globerson, Tommi S. Jaakkola:
Approximate inference using planar graph decomposition. NIPS 2006: 473-480 - [c10]Koby Crammer, Amir Globerson:
Discriminative Learning via Semidefinite Probabilistic Models. UAI 2006 - 2005
- [j2]Gal Chechik, Amir Globerson, Naftali Tishby, Yair Weiss:
Information Bottleneck for Gaussian Variables. J. Mach. Learn. Res. 6: 165-188 (2005) - [c9]John Blitzer, Amir Globerson, Fernando Pereira:
Distributed Latent Variable Models of Lexical Co-occurrences. AISTATS 2005: 25-32 - [c8]Amir Globerson, Sam T. Roweis:
Metric Learning by Collapsing Classes. NIPS 2005: 451-458 - 2004
- [c7]Amir Globerson, Gal Chechik, Fernando C. N. Pereira, Naftali Tishby:
Euclidean Embedding of Co-Occurrence Data. NIPS 2004: 497-504 - [c6]Amir Globerson, Naftali Tishby:
The Minimum Information Principle for Discriminative Learning. UAI 2004: 193-200 - 2003
- [j1]Amir Globerson, Naftali Tishby:
Sufficient Dimensionality Reduction. J. Mach. Learn. Res. 3: 1307-1331 (2003) - [c5]Gal Chechik, Amir Globerson, Naftali Tishby, Yair Weiss:
Information Bottleneck for Gaussian Variables. NIPS 2003: 1213-1220 - [c4]Amir Globerson, Gal Chechik, Naftali Tishby:
Sufficient Dimensionality Reduction with Irrelevance Statistics. UAI 2003: 281-288 - 2002
- [c3]Amir Globerson, Naftali Tishby:
Most Informative Dimension Reduction. AAAI/IAAI 2002: 1024- - [c2]Amir Globerson, Naftali Tishby:
Sufficient Dimensionality Reduction - A novel Analysis Method. ICML 2002: 203-210 - 2001
- [c1]Gal Chechik, Amir Globerson, Michael J. Anderson, Eric D. Young, Israel Nelken, Naftali Tishby:
Group Redundancy Measures Reveal Redundancy Reduction in the Auditory Pathway. NIPS 2001: 173-180
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-26 21:43 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint