default search action
Peter Tiño
Person information
- affiliation: University of Birmingham, School of Computer Science
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j79]Beata Ondrusova, Peter Tino, Jana Svehlíková:
Optimal electrode placements for localizing premature ventricular contractions using a single dipole cardiac source model. Comput. Biol. Medicine 183: 109264 (2024) - [j78]Boyu Li, Robert Simon Fong, Peter Tino:
Simple Cycle Reservoirs are Universal. J. Mach. Learn. Res. 25: 158:1-158:28 (2024) - [c109]Giuseppe Serra, Peter Tino, Zhao Xu, Xin Yao:
An Interpretable Alternative to Neural Representation Learning for Rating Prediction - Transparent Latent Class Modeling of User Reviews. IJCNN 2024: 1-8 - [c108]Peter Tino, Robert Simon Fong, Roberto Fabio Leonarduzzi:
Predictive Modeling in the Reservoir Kernel Motif Space. IJCNN 2024: 1-8 - [i29]Peter Tino, Robert Simon Fong, Roberto Fabio Leonarduzzi:
Predictive Modeling in the Reservoir Kernel Motif Space. CoRR abs/2405.07045 (2024) - [i28]Giuseppe Serra, Peter Tino, Zhao Xu, Xin Yao:
An Interpretable Alternative to Neural Representation Learning for Rating Prediction - Transparent Latent Class Modeling of User Reviews. CoRR abs/2407.00063 (2024) - [i27]Robert Simon Fong, Boyu Li, Peter Tino:
Universality of Real Minimal Complexity Reservoir. CoRR abs/2408.08071 (2024) - [i26]Antony Lee, Peter Tino, Iain Bruce Styles:
A distance function for stochastic matrices. CoRR abs/2410.12689 (2024) - 2023
- [j77]Fengzhen Tang, Peter Tino, Haibin Yu:
Generalized Learning Vector Quantization With Log-Euclidean Metric Learning on Symmetric Positive-Definite Manifold. IEEE Trans. Cybern. 53(8): 5178-5190 (2023) - [j76]Shuyi Zhang, Peter Tino, Xin Yao:
Hierarchical Reduced-Space Drift Detection Framework for Multivariate Supervised Data Streams. IEEE Trans. Knowl. Data Eng. 35(3): 2628-2640 (2023) - [j75]Abolfazl Taghribi, Kerstin Bunte, Rory Smith, Jihye Shin, Michele Mastropietro, Reynier F. Peletier, Peter Tino:
LAAT: Locally Aligned Ant Technique for Discovering Multiple Faint Low Dimensional Structures of Varying Density. IEEE Trans. Knowl. Data Eng. 35(6): 6014-6027 (2023) - [c107]Hayatullahi Bolaji Adeyemo, Rami Bahsoon, Peter Tino:
An Approach for Dynamic Behavioural Prediction and Fault Injection in Cyber-Physical Systems. BDCAT 2023: 08:1-08:6 - [c106]Beata Ondrusova, Peter Tino, Jana Svehlíková:
Inverse Solution Accuracy Using 12-Lead ECG vs 9 Significant Electrodes Derived by Greedy Algorithm. CinC 2023: 1-4 - [c105]Vahab Samandi, Peter Tino, Rami Bahsoon:
Real-Time Workflow Scheduling in Cloud with Recursive Neural Network and List Scheduling. HAIS 2023: 244-255 - [i25]Boyu Li, Robert Simon Fong, Peter Tino:
Simple Cycle Reservoirs are Universal. CoRR abs/2308.10793 (2023) - 2022
- [b1]Robert Simon Fong, Peter Tino:
Population-Based Optimization on Riemannian Manifolds. Studies in Computational Intelligence 1046, Springer 2022, ISBN 978-3-031-04292-8, pp. 1-165 - [j74]Marco Canducci, Peter Tiño, Michele Mastropietro:
Probabilistic modelling of general noisy multi-manifold data sets. Artif. Intell. 302: 103579 (2022) - [j73]Marco Canducci, P. Awad, Abolfazl Taghribi, Mohammad Mohammadi, Michele Mastropietro, Sven De Rijcke, Reynier Peletier, Rory Smith, Kerstin Bunte, Peter Tiño:
1-DREAM: 1D Recovery, Extraction and Analysis of Manifolds in noisy environments. Astron. Comput. 41: 100658 (2022) - [j72]Abolfazl Taghribi, Marco Canducci, Michele Mastropietro, Sven De Rijcke, Kerstin Bunte, Peter Tino:
ASAP - A sub-sampling approach for preserving topological structures modeled with geodesic topographic mapping. Neurocomputing 470: 376-388 (2022) - [j71]Mohammad Mohammadi, Peter Tino, Kerstin Bunte:
Manifold Alignment Aware Ants: A Markovian Process for Manifold Extraction. Neural Comput. 34(3): 595-641 (2022) - [j70]Pietro Verzelli, Cesare Alippi, Lorenzo Livi, Peter Tino:
Input-to-State Representation in Linear Reservoirs Dynamics. IEEE Trans. Neural Networks Learn. Syst. 33(9): 4598-4609 (2022) - [c104]Hayatullahi Bolaji Adeyemo, Rami Bahsoon, Peter Tiño:
Surrogate-based Digital Twin for Predictive Fault Modelling and Testing of Cyber Physical Systems. BDCAT 2022: 166-169 - [c103]Beata Ondrusova, Jana Svehlíková, Milan Tysler, Peter Tino:
Greedy Selection of the Torso Electrodes for the Solution of Inverse Problem with a Single Dipole. CinC 2022: 1-4 - [c102]Vahab Samandi, Peter Tino, Rami Bahsoon:
Duplication Scheduling with Bottom-Up Top-Down Recursive Neural Network. IDEAL 2022: 170-178 - [c101]Stephen Friess, Peter Tino, Stefan Menzel, Zhao Xu, Bernhard Sendhoff, Xin Yao:
Spatio-Temporal Activity Recognition for Evolutionary Search Behavior Prediction. IJCNN 2022: 1-8 - [e7]Hujun Yin, David Camacho, Peter Tiño:
Intelligent Data Engineering and Automated Learning - IDEAL 2022 - 23rd International Conference, IDEAL 2022, Manchester, UK, November 24-26, 2022, Proceedings. Lecture Notes in Computer Science 13756, Springer 2022, ISBN 978-3-031-21752-4 [contents] - [i24]Sreejita Ghosh, Elizabeth Sarah Baranowski, Michael Biehl, Wiebke Arlt, Peter Tino, Kerstin Bunte:
Interpretable Models Capable of Handling Systematic Missingness in Imbalanced Classes and Heterogeneous Datasets. CoRR abs/2206.02056 (2022) - 2021
- [j69]Seyma Kucukozer Cavdar, Tugba Taskaya-Temizel, Abhinav Mehrotra, Mirco Musolesi, Peter Tino:
Designing Robust Models for Behaviour Prediction Using Sparse Data from Mobile Sensing: A Case Study of Office Workers' Availability for Well-being Interventions. ACM Trans. Comput. Heal. 2(4): 29:1-29:33 (2021) - [j68]Fengzhen Tang, Haifeng Feng, Peter Tino, Bailu Si, Daxiong Ji:
Probabilistic learning vector quantization on manifold of symmetric positive definite matrices. Neural Networks 142: 105-118 (2021) - [j67]Yu Zhang, Peter Tiño, Ales Leonardis, Ke Tang:
A Survey on Neural Network Interpretability. IEEE Trans. Emerg. Top. Comput. Intell. 5(5): 726-742 (2021) - [j66]Fengzhen Tang, Mengling Fan, Peter Tiño:
Generalized Learning Riemannian Space Quantization: A Case Study on Riemannian Manifold of SPD Matrices. IEEE Trans. Neural Networks Learn. Syst. 32(1): 281-292 (2021) - [c100]Beata Ondrusova, Jana Svehlíková, Jan Zelinka, Milan Tysler, Peter Tino:
Model-Based Relevance of Measuring Electrodes for the Inverse Solution with a Single Dipole. CinC 2021: 1-4 - [c99]Abdessalam Elhabbash, Rami Bahsoon, Peter Tino, Peter R. Lewis, Yehia Elkhatib:
Attaining Meta-self-awareness through Assessment of Quality-of-Knowledge. ICWS 2021: 712-723 - [c98]Marco Canducci, Abolfazl Taghribi, Michele Mastropietro, Sven De Rijcke, Reynier Peletier, Kerstin Bunte, Peter Tino:
Tracking the Temporal-Evolution of Supernova Bubbles in Numerical Simulations. IDEAL 2021: 493-501 - [c97]Xinyue Chen, Yuan Shen, Eder Zavala, Krasimira Tsaneva-Atanasova, Thomas Upton, Georgina Russell, Peter Tino:
SOMiMS - Topographic Mapping in the Model Space. IDEAL 2021: 502-510 - [c96]Stephen Friess, Peter Tiño, Zhao Xu, Stefan Menzel, Bernhard Sendhoff, Xin Yao:
Artificial Neural Networks as Feature Extractors in Continuous Evolutionary Optimization. IJCNN 2021: 1-9 - [c95]Giuseppe Serra, Zhao Xu, Mathias Niepert, Carolin Lawrence, Peter Tiño, Xin Yao:
Interpreting Node Embedding with Text-labeled Graphs. IJCNN 2021: 1-8 - [c94]Shuyi Zhang, Chao Pan, Liyan Song, Xiaoyu Wu, Zheng Hu, Ke Pei, Peter Tino, Xin Yao:
Label-Assisted Memory Autoencoder for Unsupervised Out-of-Distribution Detection. ECML/PKDD (3) 2021: 795-810 - [c93]Stephen Friess, Peter Tino, Stefan Menzel, Bernhard Sendhoff, Xin Yao:
Predicting CMA-ES Operators as Inductive Biases for Shape Optimization Problems. SSCI 2021: 1-7 - [e6]Hujun Yin, David Camacho, Peter Tiño, Richard Allmendinger, Antonio J. Tallón-Ballesteros, Ke Tang, Sung-Bae Cho, Paulo Novais, Susana Nascimento:
Intelligent Data Engineering and Automated Learning - IDEAL 2021 - 22nd International Conference, IDEAL 2021, Manchester, UK, November 25-27, 2021, Proceedings. Lecture Notes in Computer Science 13113, Springer 2021, ISBN 978-3-030-91607-7 [contents] - [i23]Fengzhen Tang, Haifeng Feng, Peter Tiño, Bailu Si, Daxiong Ji:
Probabilistic Learning Vector Quantization on Manifold of Symmetric Positive Definite Matrices. CoRR abs/2102.00667 (2021) - 2020
- [j65]Lukas Pfannschmidt, Jonathan Jakob, Fabian Hinder, Michael Biehl, Peter Tiño, Barbara Hammer:
Feature relevance determination for ordinal regression in the context of feature redundancies and privileged information. Neurocomputing 416: 266-279 (2020) - [j64]Seyma Kucukozer Cavdar, Tugba Taskaya-Temizel, Mirco Musolesi, Peter Tiño:
A Multi-perspective Analysis of Social Context and Personal Factors in Office Settings for the Design of an Effective Mobile Notification System. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4(1): 15:1-15:38 (2020) - [j63]Peter Tiño:
Dynamical Systems as Temporal Feature Spaces. J. Mach. Learn. Res. 21: 44:1-44:42 (2020) - [j62]Frank-Michael Schleif, Christoph Raab, Peter Tiño:
Sparsification of core set models in non-metric supervised learning. Pattern Recognit. Lett. 129: 1-7 (2020) - [c92]Stephen Friess, Peter Tiño, Stefan Menzel, Bernhard Sendhoff, Xin Yao:
Representing Experience in Continuous Evolutionary optimisation through Problem-tailored Search Operators. CEC 2020: 1-7 - [c91]Abolfazl Taghribi, Kerstin Bunte, Michele Mastropietro, Sven De Rijcke, Peter Tiño:
ASAP - A Sub-sampling Approach for Preserving Topological Structures. ESANN 2020: 67-72 - [c90]Sreejita Ghosh, Peter Tiño, Kerstin Bunte:
Visualisation and knowledge discovery from interpretable models. IJCNN 2020: 1-8 - [c89]Stephen Friess, Peter Tiño, Stefan Menzel, Bernhard Sendhoff, Xin Yao:
Improving Sampling in Evolution Strategies Through Mixture-Based Distributions Built from Past Problem Instances. PPSN (1) 2020: 583-596 - [i22]Pietro Verzelli, Cesare Alippi, Lorenzo Livi, Peter Tiño:
Input representation in recurrent neural networks dynamics. CoRR abs/2003.10585 (2020) - [i21]Sreejita Ghosh, Peter Tiño, Kerstin Bunte:
Visualisation and knowledge discovery from interpretable models. CoRR abs/2005.03632 (2020) - [i20]Abolfazl Taghribi, Kerstin Bunte, Rory Smith, Jihye Shin, Michele Mastropietro, Reynier F. Peletier, Peter Tiño:
LAAT: Locally Aligned Ant Technique for detecting manifolds of varying density. CoRR abs/2009.08326 (2020) - [i19]Tom Goodman, Karoline van Gemst, Peter Tiño:
A Geometric Framework for Pitch Estimation on Acoustic Musical Signals. CoRR abs/2012.04517 (2020) - [i18]Yu Zhang, Peter Tiño, Ales Leonardis, Ke Tang:
A Survey on Neural Network Interpretability. CoRR abs/2012.14261 (2020)
2010 – 2019
- 2019
- [j61]Siang Yew Chong, Peter Tiño, Jun He:
Coevolutionary systems and PageRank. Artif. Intell. 277 (2019) - [j60]Siang Yew Chong, Peter Tiño, Jun He, Xin Yao:
A New Framework for Analysis of Coevolutionary Systems - Directed Graph Representation and Random Walks. Evol. Comput. 27(2): 195-228 (2019) - [j59]Abdessalam Elhabbash, Maria Salama, Rami Bahsoon, Peter Tiño:
Self-awareness in Software Engineering: A Systematic Literature Review. ACM Trans. Auton. Adapt. Syst. 14(2): 5:1-5:42 (2019) - [c88]María Pérez-Ortiz, Peter Tiño, Rafal Mantiuk, César Hervás-Martínez:
Exploiting Synthetically Generated Data with Semi-Supervised Learning for Small and Imbalanced Datasets. AAAI 2019: 4715-4722 - [c87]Jana Svehlíková, Jan Zelinka, Milan Tysler, Peter Tiño:
Multiobjective Optimization Approach to Localization of Ectopic Beats by Single Dipole: Case Study. CinC 2019: 1-4 - [c86]Lukas Pfannschmidt, Jonathan Jakob, Michael Biehl, Peter Tiño, Barbara Hammer:
Feature relevance bounds for ordinal regression. ESANN 2019 - [c85]Robert Simon Fong, Peter Tiño:
Extended stochastic derivative-free optimization on riemannian manifolds. GECCO (Companion) 2019: 257-258 - [c84]Stephen Friess, Peter Tiño, Stefan Menzel, Bernhard Sendhoff, Xin Yao:
Learning Transferable Variation Operators in a Continuous Genetic Algorithm. SSCI 2019: 2027-2033 - [e5]Hujun Yin, David Camacho, Peter Tiño, Antonio J. Tallón-Ballesteros, Ronaldo Menezes, Richard Allmendinger:
Intelligent Data Engineering and Automated Learning - IDEAL 2019 - 20th International Conference, Manchester, UK, November 14-16, 2019, Proceedings, Part I. Lecture Notes in Computer Science 11871, Springer 2019, ISBN 978-3-030-33606-6 [contents] - [e4]Hujun Yin, David Camacho, Peter Tiño, Antonio J. Tallón-Ballesteros, Ronaldo Menezes, Richard Allmendinger:
Intelligent Data Engineering and Automated Learning - IDEAL 2019 - 20th International Conference, Manchester, UK, November 14-16, 2019, Proceedings, Part II. Lecture Notes in Computer Science 11872, Springer 2019, ISBN 978-3-030-33616-5 [contents] - [i17]Lukas Pfannschmidt, Jonathan Jakob, Michael Biehl, Peter Tiño, Barbara Hammer:
Feature Relevance Bounds for Ordinal Regression. CoRR abs/1902.07662 (2019) - [i16]María Pérez-Ortiz, Pedro Antonio Gutiérrez, Peter Tiño, Carlos Casanova-Mateo, Sancho Salcedo-Sanz:
A mixture of experts model for predicting persistent weather patterns. CoRR abs/1903.10012 (2019) - [i15]María Pérez-Ortiz, Peter Tiño, Rafal Mantiuk, César Hervás-Martínez:
Exploiting Synthetically Generated Data with Semi-Supervised Learning for Small and Imbalanced Datasets. CoRR abs/1903.10022 (2019) - [i14]Peter Tiño:
Dynamical Systems as Temporal Feature Spaces. CoRR abs/1907.06382 (2019) - [i13]Lukas Pfannschmidt, Jonathan Jakob, Fabian Hinder, Michael Biehl, Peter Tiño, Barbara Hammer:
Feature Relevance Determination for Ordinal Regression in the Context of Feature Redundancies and Privileged Information. CoRR abs/1912.04832 (2019) - 2018
- [j58]Peter Tiño:
Asymptotic Fisher memory of randomized linear symmetric Echo State Networks. Neurocomputing 298: 4-8 (2018) - [j57]Frank-Michael Schleif, Andrej Gisbrecht, Peter Tiño:
Supervised low rank indefinite kernel approximation using minimum enclosing balls. Neurocomputing 318: 213-226 (2018) - [c83]Michael Biehl, Kerstin Bunte, Giuseppe Longo, Peter Tiño:
Machine learning and data analysis in astroinformatics. ESANN 2018 - [c82]Claudio Gallicchio, Alessio Micheli, Peter Tiño:
Randomized Recurrent Neural Networks. ESANN 2018 - [c81]M. Pérez-Ortiz, Pedro Antonio Gutiérrez, Peter Tiño, Carlos Casanova-Mateo, Sancho Salcedo-Sanz:
A mixture of experts model for predicting persistent weather patterns. IJCNN 2018: 1-8 - [c80]Frank-Michael Schleif, Christoph Raab, Peter Tiño:
Sparsification of Indefinite Learning Models. S+SSPR 2018: 173-183 - 2017
- [j56]Fengzhen Tang, Peter Tiño:
Ordinal regression based on learning vector quantization. Neural Networks 93: 76-88 (2017) - [j55]Frank-Michael Schleif, Peter Tiño:
Indefinite Core Vector Machine. Pattern Recognit. 71: 187-195 (2017) - [c79]Sreejita Ghosh, Elizabeth Sarah Baranowski, Rick van Veen, Gert-Jan de Vries, Michael Biehl, Wiebke Arlt, Peter Tiño, Kerstin Bunte:
Comparison of strategies to learn from imbalanced classes for computer aided diagnosis of inborn steroidogenic disorders. ESANN 2017 - [c78]Peter Tiño:
Fisher memory of linear Wigner echo state networks. ESANN 2017 - [c77]Abdessalam Elhabbash, Rami Bahsoon, Peter Tiño:
Self-Awareness for Dynamic Knowledge Management in Self-Adaptive Volunteer Services. ICWS 2017: 180-187 - [c76]Fani Tsapeli, Peter Tiño, Mirco Musolesi:
Probabilistic matching: Causal inference under measurement errors. IJCNN 2017: 278-285 - [c75]Luca Pasa, Alessandro Sperduti, Peter Tiño:
Linear dynamical based models for sequential domains. IJCNN 2017: 2201-2208 - [c74]Yuan Shen, Peter Tiño, Krasimira Tsaneva-Atanasova:
Classification of sparsely and irregularly sampled time series: A learning in model space approach. IJCNN 2017: 3696-3703 - [i12]Fani Tsapeli, Nikolaos Bezirgiannidis, Peter Tiño, Mirco Musolesi:
Linking Twitter Events With Stock Market Jitters. CoRR abs/1709.06519 (2017) - 2016
- [j54]Hanin H. Alahmadi, Yuan Shen, Shereen Fouad, Caroline Di Bernardi Luft, Peter Bentham, Zoe Kourtzi, Peter Tiño:
Classifying Cognitive Profiles Using Machine Learning with Privileged Information in Mild Cognitive Impairment. Frontiers Comput. Neurosci. 10: 117 (2016) - [j53]Nikolaos Gianniotis, Sven Dennis Kügler, Peter Tiño, Kai Lars Polsterer:
Model-coupled autoencoder for time series visualisation. Neurocomputing 192: 139-146 (2016) - [j52]María Pérez-Ortiz, Pedro Antonio Gutiérrez, Peter Tiño, César Hervás-Martínez:
Oversampling the Minority Class in the Feature Space. IEEE Trans. Neural Networks Learn. Syst. 27(9): 1947-1961 (2016) - [c73]Frank-Michael Schleif, Ata Kabán, Peter Tiño:
Finding Small Sets of Random Fourier Features for Shift-Invariant Kernel Approximation. ANNPR 2016: 42-54 - [c72]Frank-Michael Schleif, Peter Tiño, Yingyu Liang:
Learning in indefinite proximity spaces - recent trends. ESANN 2016 - [c71]Sultanah Al Otaibi, Peter Tiño, Somak Raychaudhury:
Probabilistic Modelling for Delay Estimation in Gravitationally Lensed Photon Streams. IDEAL 2016: 552-559 - [c70]Abdessalam Elhabbash, Rami Bahsoon, Peter Tiño:
Interaction-Awareness for Self-Adaptive Volunteer Computing. SASO 2016: 148-149 - [c69]Nahed Alowadi, Yuan Shen, Peter Tiño:
Prototype-Based Spatio-Temporal Probabilistic Modelling of fMRI Data. WSOM 2016: 193-203 - [i11]Nikolaos Gianniotis, Sven Dennis Kügler, Peter Tiño, Kai Lars Polsterer:
Model-Coupled Autoencoder for Time Series Visualisation. CoRR abs/1601.05654 (2016) - [i10]Frank-Michael Schleif, Andrej Gisbrecht, Peter Tiño:
Probabilistic classifiers with low rank indefinite kernels. CoRR abs/1604.02264 (2016) - 2015
- [j51]Fengzhen Tang, Peter Tiño, Pedro Antonio Gutiérrez, Huanhuan Chen:
The Benefits of Modeling Slack Variables in SVMs. Neural Comput. 27(4): 954-981 (2015) - [j50]Frank-Michael Schleif, Peter Tiño:
Indefinite Proximity Learning: A Review. Neural Comput. 27(10): 2039-2096 (2015) - [c68]Nikolaos Gianniotis, Sven Dennis Kügler, Peter Tiño, Kai Polsterer, Ranjeev Misra:
Autoencoding time series for visualisation. ESANN 2015 - [c67]Frank-Michael Schleif, Andrej Gisbrecht, Peter Tiño:
Probabilistic Classification Vector Machine at large scale. ESANN 2015 - [c66]Rafee T. Ibrahem, Peter Tiño, Richard J. Pearson, Trevor J. Ponman, Arif Babul:
Automated Detection of Galaxy Groups Through Probabilistic Hough Transform. ICONIP (3) 2015: 323-331 - [c65]Abdessalam Elhabbash, Rami Bahsoon, Peter Tiño, Peter R. Lewis:
Self-Adaptive Volunteered Services Composition through Stimulus- and Time-Awareness. ICWS 2015: 57-64 - [c64]Huanhuan Chen, Fengzhen Tang, Peter Tiño, Anthony G. Cohn, Xin Yao:
Model Metric Co-Learning for Time Series Classification. IJCAI 2015: 3387-3394 - [c63]Frank-Michael Schleif, H. Chen, Peter Tiño:
Incremental probabilistic classification vector machine with linear costs. IJCNN 2015: 1-8 - [c62]Frank-Michael Schleif, Andrej Gisbrecht, Peter Tiño:
Large Scale Indefinite Kernel Fisher Discriminant. SIMBAD 2015: 160-170 - [p2]Peter Tiño, Lubica Benuskova, Alessandro Sperduti:
Artificial Neural Network Models. Handbook of Computational Intelligence 2015: 455-471 - [i9]Nikolaos Gianniotis, Sven Dennis Kügler, Peter Tiño, Kai Polsterer, Ranjeev Misra:
Autoencoding Time Series for Visualisation. CoRR abs/1505.00936 (2015) - 2014
- [j49]Huanhuan Chen, Peter Tiño, Xin Yao:
Cognitive fault diagnosis in Tennessee Eastman Process using learning in the model space. Comput. Chem. Eng. 67: 33-42 (2014) - [j48]Joseba Quevedo, Huanhuan Chen, Miquel Àngel Cugueró, Peter Tiño, Vicenç Puig, Diego García, Ramon Sarrate, Xin Yao:
Combining learning in model space fault diagnosis with data validation/reconstruction: Application to the Barcelona water network. Eng. Appl. Artif. Intell. 30: 18-29 (2014) - [j47]Yuan Shen, Stephen D. Mayhew, Zoe Kourtzi, Peter Tiño:
Spatial-temporal modelling of fMRI data through spatially regularized mixture of hidden process models. NeuroImage 84: 657-671 (2014) - [j46]Pedro Antonio Gutiérrez, Peter Tiño, César Hervás-Martínez:
Ordinal regression neural networks based on concentric hyperspheres. Neural Networks 59: 51-60 (2014) - [j45]Jakub Mazgut, Peter Tiño, Mikael Bodén, Hong Yan:
Dimensionality reduction and topographic mapping of binary tensors. Pattern Anal. Appl. 17(3): 497-515 (2014) - [j44]Huanhuan Chen, Peter Tiño, Ali Rodan, Xin Yao:
Learning in the Model Space for Cognitive Fault Diagnosis. IEEE Trans. Neural Networks Learn. Syst. 25(1): 124-136 (2014) - [j43]Huanhuan Chen, Peter Tiño, Xin Yao:
Efficient Probabilistic Classification Vector Machine With Incremental Basis Function Selection. IEEE Trans. Neural Networks Learn. Syst. 25(2): 356-369 (2014) - [c61]Frank-Michael Schleif, Peter Tiño, Thomas Villmann:
Recent trends in learning of structured and non-standard data. ESANN 2014 - [c60]Fengzhen Tang, Peter Tiño, Pedro Antonio Gutiérrez, Huanhuan Chen:
Support Vector Ordinal Regression using Privileged Information. ESANN 2014 - [c59]Abdessalam Elhabbash, Rami Bahsoon, Peter Tiño:
Towards Self-Aware Service Composition. HPCC/CSS/ICESS 2014: 1275-1279 - [c58]Fengzhen Tang, Peter Tiño, Huanhuan Chen:
Learning the deterministically constructed Echo State Networks. IJCNN 2014: 77-83 - [c57]Abdessalam Elhabbash, Rami Bahsoon, Peter Tiño, Peter R. Lewis:
A Utility Model for Volunteered Service Composition. UCC 2014: 337-344 - 2013
- [j42]Peter Tiño:
Pushing for the Extreme: Estimation of Poisson Distribution from Low Count Unreplicated Data - How Close Can We Get? Entropy 15(4): 1202-1220 (2013) - [j41]Alessio Micheli, Frank-Michael Schleif, Peter Tiño:
Novel approaches in machine learning and computational intelligence. Neurocomputing 112: 1-3 (2013) - [j40]Peter Tiño, Ali Rodan:
Short term memory in input-driven linear dynamical systems. Neurocomputing 112: 58-63 (2013) - [j39]Nikolay I. Nikolaev, Peter Tiño, Evgueni N. Smirnov:
Time-dependent series variance learning with recurrent mixture density networks. Neurocomputing 122: 501-512 (2013) - [j38]Javier Sánchez-Monedero, Pedro Antonio Gutiérrez, Peter Tiño, César Hervás-Martínez:
Exploitation of Pairwise Class Distances for Ordinal Classification. Neural Comput. 25(9): 2450-2485 (2013) - [j37]Orla M. Doyle, Krasimira Tsaneva-Atanasova, James Michael Harte, Paul A. Tiffin, Peter Tiño, Vanessa Díaz-Zuccarini:
Bridging Paradigms: Hybrid Mechanistic-Discriminative Predictive Models. IEEE Trans. Biomed. Eng. 60(3): 735-742 (2013) - [j36]Peter Tiño, Siang Yew Chong, Xin Yao:
Complex Coevolutionary Dynamics - Structural Stability and Finite Population Effects. IEEE Trans. Evol. Comput. 17(2): 155-164 (2013) - [j35]Weishan Dong, Tianshi Chen, Peter Tiño, Xin Yao:
Scaling Up Estimation of Distribution Algorithms for Continuous Optimization. IEEE Trans. Evol. Comput. 17(6): 797-822 (2013) - [j34]Shereen Fouad, Peter Tiño, Somak Raychaudhury, Petra Schneider:
Incorporating Privileged Information Through Metric Learning. IEEE Trans. Neural Networks Learn. Syst. 24(7): 1086-1098 (2013) - [j33]Phil Weber, Behzad Bordbar, Peter Tiño:
A Framework for the Analysis of Process Mining Algorithms. IEEE Trans. Syst. Man Cybern. Syst. 43(2): 303-317 (2013) - [c56]Phil Weber, Behzad Bordbar, Peter Tiño:
A principled approach to mining from noisy logs using Heuristics Miner. CIDM 2013: 119-126 - [c55]Shereen Fouad, Peter Tiño:
Ordinal-based metric learning for learning using privileged information. IJCNN 2013: 1-8 - [c54]Shuo Wang, Leandro L. Minku, Davide Ghezzi, Daniele Caltabiano, Peter Tiño, Xin Yao:
Concept drift detection for online class imbalance learning. IJCNN 2013: 1-10 - [c53]Huanhuan Chen, Fengzhen Tang, Peter Tiño, Xin Yao:
Model-based kernel for efficient time series analysis. KDD 2013: 392-400 - [c52]Yuan Shen, Stephen D. Mayhew, Zoe Kourtzi, Peter Tiño:
A Spatial Mixture Approach to Inferring Sub-ROI Spatio-temporal Patterns from Rapid Event-Related fMRI Data. MICCAI (2) 2013: 657-664 - [i8]Boris Rudolf, Mária Markosová, Martin Cajági, Peter Tiño:
Degree distribution and scaling in the Connecting Nearest Neighbors model. CoRR abs/1304.3375 (2013) - 2012
- [j32]Richard Price, Peter Tiño, Georgios Theodoropoulos:
Still Alive: Extending Keep-Alive Intervals in P2P Overlay Networks. Mob. Networks Appl. 17(3): 378-394 (2012) - [j31]Ali Rodan, Peter Tiño:
Simple Deterministically Constructed Cycle Reservoirs with Regular Jumps. Neural Comput. 24(7): 1822-1852 (2012) - [j30]Shereen Fouad, Peter Tiño:
Adaptive Metric Learning Vector Quantization for Ordinal Classification. Neural Comput. 24(11): 2825-2851 (2012) - [j29]Siang Yew Chong, Peter Tiño, Day Chyi Ku, Xin Yao:
Improving Generalization Performance in Co-Evolutionary Learning. IEEE Trans. Evol. Comput. 16(1): 70-85 (2012) - [c51]Manjunath Gandhi, Peter Tiño, Herbert Jaeger:
Theory of Input Driven Dynamical Systems. ESANN 2012 - [c50]Peter Tiño, Ali Rodan:
Short Term Memory Quantifications in Input-Driven Linear Dynamical Systems. ESANN 2012 - [c49]Phil Weber, Peter Tiño, Behzad Bordbar:
Process Mining in Non-Stationary Environments. ESANN 2012 - [c48]Shereen Fouad, Peter Tiño, Somak Raychaudhury, Petra Schneider:
Learning Using Privileged Information in Prototype Based Models. ICANN (2) 2012: 322-329 - [c47]Shereen Fouad, Peter Tiño:
Prototype Based Modelling for Ordinal Classification. IDEAL 2012: 208-215 - [c46]Peter Tiño, Somak Raychaudhury:
Computational Intelligence in Astronomy - A Win-Win Situation. TPNC 2012: 57-71 - [i7]Huanhuan Chen, Peter Tiño, Xin Yao, Ali Rodan:
Learning in the Model Space for Fault Diagnosis. CoRR abs/1210.8291 (2012) - 2011
- [j28]Peter Tiño, Hongya Zhao, Hong Yan:
Searching for Coexpressed Genes in Three-Color cDNA Microarray Data Using a Probabilistic Model-Based Hough Transform. IEEE ACM Trans. Comput. Biol. Bioinform. 8(4): 1093-1107 (2011) - [j27]Ali Rodan, Peter Tiño:
Minimum Complexity Echo State Network. IEEE Trans. Neural Networks 22(1): 131-144 (2011) - [c45]Ali Rodan, Peter Tiño:
Negatively Correlated Echo State Networks. ESANN 2011 - [c44]Nikolay I. Nikolaev, Peter Tiño, Evgueni N. Smirnov:
Time-Dependent Series Variance Estimation via Recurrent Neural Networks. ICANN (1) 2011: 176-184 - [c43]Phil Weber, Behzad Bordbar, Peter Tiño:
Real-Time Detection of Process Change using Process Mining. ICCSW 2011: 108-114 - [c42]Phil Weber, Behzad Bordbar, Peter Tiño:
A Principled Approach to the Analysis of Process Mining Algorithms. IDEAL 2011: 474-481 - [c41]Peter Tiño:
One-Shot Learning of Poisson Distributions in Serial Analysis of Gene Expression. ISNN (2) 2011: 37-46 - [c40]Jakub Mazgut, Martina Paulinyová, Peter Tiño:
Using Dimensionality Reduction Method for Binary Data to Questionnaire Analysis. MEMICS 2011: 146-154 - [i6]Weishan Dong, Tianshi Chen, Peter Tiño, Xin Yao:
Scaling Up Estimation of Distribution Algorithms For Continuous Optimization. CoRR abs/1111.2221 (2011) - 2010
- [j26]Juan Carlos Cuevas-Tello, Peter Tiño, Somak Raychaudhury, Xin Yao, Markus Harva:
Uncovering delayed patterns in noisy and irregularly sampled time series: An astronomy application. Pattern Recognit. 43(3): 1165-1179 (2010) - [c39]Peter Tiño, Siang Yew Chong, Xin Yao:
On Reliability Of Simulations Of Complex Co-Evolutionary Processes. ECMS 2010: 258-264 - [c38]Jakub Mazgut, Peter Tiño, Mikael Bodén, Hong Yan:
Multilinear Decomposition and Topographic Mapping of Binary Tensors. ICANN (1) 2010: 317-326 - [c37]Ali Rodan, Peter Tiño:
Simple Deterministically Constructed Recurrent Neural Networks. IDEAL 2010: 267-274 - [c36]Richard Price, Peter Tiño:
Adapting to NAT timeout values in P2P overlay networks. IPDPS Workshops 2010: 1-6 - [e3]Colin Fyfe, Peter Tiño, Darryl Charles, César Ignacio García-Osorio, Hujun Yin:
Intelligent Data Engineering and Automated Learning - IDEAL 2010, 11th International Conference, Paisley, UK, September 1-3, 2010. Proceedings. Lecture Notes in Computer Science 6283, Springer 2010, ISBN 978-3-642-15380-8 [contents] - [i5]Peter Tiño:
One-shot Learning of Poisson Distributions in fast changing environments. Learning paradigms in dynamic environments 2010
2000 – 2009
- 2009
- [j25]Peter Tiño:
Basic properties and information theory of Audic-Claverie statistic for analyzing cDNA arrays. BMC Bioinform. 10: 310 (2009) - [j24]Siang Yew Chong, Peter Tiño, Xin Yao:
Relationship Between Generalization and Diversity in Coevolutionary Learning. IEEE Trans. Comput. Intell. AI Games 1(3): 214-232 (2009) - [j23]Huanhuan Chen, Peter Tiño, Xin Yao:
Predictive Ensemble Pruning by Expectation Propagation. IEEE Trans. Knowl. Data Eng. 21(7): 999-1013 (2009) - [j22]Huanhuan Chen, Peter Tiño, Xin Yao:
Probabilistic Classification Vector Machines. IEEE Trans. Neural Networks 20(6): 901-914 (2009) - [c35]Richard Price, Peter Tiño:
Still alive: Extending keep-alive intervals in P2P overlay networks. CollaborateCom 2009: 1-10 - [c34]Nikolaos Gianniotis, Peter Tiño:
Visualization of Structured Data via Generative Probabilistic Modeling. Similarity-Based Clustering 2009: 118-137 - [c33]Nikolaos Gianniotis, Peter Tiño, Steve Spreckley, Somak Raychaudhury:
Topographic Mapping of Astronomical Light Curves via a Physically Inspired Probabilistic Model. ICANN (1) 2009: 567-576 - [c32]Peter Tiño, Hongya Zhao, Hong Yan:
Probabilistic Model Based Hough Transform for Detection of Co-expression Patterns in Three-Color cDNA Microarray Data. IJCBS 2009: 48-51 - [c31]Xiaoxia Wang, Peter Tiño, Mark A. Fardal, Somak Raychaudhury, Arif Babul:
Fast parzen window density estimator. IJCNN 2009: 3267-3274 - [i4]Peter Tiño, Juan Carlos Cuevas-Tello, Somak Raychaudhury:
Estimating Time Delay in Gravitationally Lensed Fluxes. Similarity-based learning on structures 2009 - [i3]Juan Carlos Cuevas-Tello, Peter Tiño, Somak Raychaudhury, Xin Yao, Markus Harva:
Uncovering delayed patterns in noisy and irregularly sampled time series: an astronomy application. CoRR abs/0908.3706 (2009) - 2008
- [j21]Siang Yew Chong, Peter Tiño, Xin Yao:
Measuring Generalization Performance in Coevolutionary Learning. IEEE Trans. Evol. Comput. 12(4): 479-505 (2008) - [j20]Nikolaos Gianniotis, Peter Tiño:
Visualization of Tree-Structured Data Through Generative Topographic Mapping. IEEE Trans. Neural Networks 19(8): 1468-1493 (2008) - [c30]Michal Cernanský, Peter Tiño:
Predictive Modeling with Echo State Networks. ICANN (1) 2008: 778-787 - [c29]Xiaoxia Wang, Peter Tiño, Mark A. Fardal:
Multiple Manifolds Learning Framework Based on Hierarchical Mixture Density Model. ECML/PKDD (2) 2008: 566-581 - [i2]Peter Tiño:
Equilibria of Iterative Softmax and Critical Temperatures for Intermittent Search in Self-Organizing Neural Networks. Recurrent Neural Networks 2008 - 2007
- [j19]Peter Tiño:
Equilibria of Iterative Softmax and Critical Temperatures for Intermittent Search in Self-Organizing Neural Networks. Neural Comput. 19(4): 1056-1081 (2007) - [c28]Nikolaos Gianniotis, Peter Tiño:
Visualisation of tree-structured data through generative probabilistic modelling. ESANN 2007: 97-102 - [c27]Michal Cernanský, Peter Tiño:
Comparison of Echo State Networks with Simple Recurrent Networks and Variable-Length Markov Models on Symbolic Sequences. ICANN (1) 2007: 618-627 - [c26]Peter Tiño:
Bifurcations of Renormalization Dynamics in Self-organizing Neural Networks. ICONIP (1) 2007: 405-414 - [c25]Peter Tiño, Nikolaos Gianniotis:
Metric Properties of Structured Data Visualizations through Generative Probabilistic Modeling. IJCAI 2007: 1083-1088 - [c24]Peter Tiño:
On Conditions for Intermittent Search in Self-organizing Neural Networks. MICAI 2007: 172-181 - [p1]Peter Tiño, Barbara Hammer, Mikael Bodén:
Markovian Bias of Neural-based Architectures With Feedback Connections. Perspectives of Neural-Symbolic Integration 2007: 95-133 - [e2]Hujun Yin, Peter Tiño, Emilio Corchado, William Byrne, Xin Yao:
Intelligent Data Engineering and Automated Learning - IDEAL 2007, 8th International Conference, Birmingham, UK, December 16-19, 2007, Proceedings. Lecture Notes in Computer Science 4881, Springer 2007, ISBN 978-3-540-77225-5 [contents] - 2006
- [j18]Peter Tiño, Ashley J. S. Mills:
Learning Beyond Finite Memory in Recurrent Networks of Spiking Neurons. Neural Comput. 18(3): 591-613 (2006) - [j17]Peter Tiño, Igor Farkas, Jort van Mourik:
Dynamics and Topographic Organization of Recursive Self-Organizing Maps. Neural Comput. 18(10): 2529-2567 (2006) - [c23]Juan Carlos Cuevas-Tello, Peter Tiño, Somak Raychaudhury:
A Kernel-Based Approach to Estimating Phase Shifts Between Irregularly Sampled Time Series: An Application to Gravitational Lenses. ECML 2006: 614-621 - [c22]Huanhuan Chen, Peter Tiño, Xin Yao:
A Probabilistic Ensemble Pruning Algorithm. ICDM Workshops 2006: 878-882 - [c21]Jane M. Binner, Barry Jones, Graham Kendall, Jonathan A. Tepper, Peter Tiño:
Does Money Matter? An Artificial Intelligence Approach. JCIS 2006 - [c20]Peter Tiño:
Critical Temperatures for Intermittent Search in Self-Organizing Neural Networks. PPSN 2006: 633-640 - [i1]Juan Carlos Cuevas-Tello, Peter Tiño, Somak Raychaudhury:
How accurate are the time delay estimates in gravitational lensing? CoRR abs/astro-ph/0605042 (2006) - 2005
- [j16]Gavin Brown, Jeremy L. Wyatt, Peter Tiño:
Managing Diversity in Regression Ensembles. J. Mach. Learn. Res. 6: 1621-1650 (2005) - [j15]Ian T. Nabney, Yi Sun, Peter Tiño, Ata Kabán:
Semisupervised Learning of Hierarchical Latent Trait Models for Data Visualization. IEEE Trans. Knowl. Data Eng. 17(3): 384-400 (2005) - [c19]Peter Tiño, Ashley J. S. Mills:
Learning Beyond Finite Memory in Recurrent Networks of Spiking Neurons. ICNC (2) 2005: 666-675 - [c18]Peter Tiño, Igor Farkas:
On Non-markovian Topographic Organization of Receptive Fields in Recursive Self-organizing Map. ICNC (2) 2005: 676-685 - [c17]Peter Tiño, Igor Farkas, Jort van Mourik:
Recursive Self-organizing Map as a Contractive Iterative Function System. IDEAL 2005: 327-334 - 2004
- [j14]Peter Tiño, Ian T. Nabney, Bruce S. Williams, Jens Lösel, Yi Sun:
Nonlinear Prediction of Quantitative Structure-Activity Relationships. J. Chem. Inf. Model. 44(5): 1647-1653 (2004) - [j13]Gabriela Polcicová, Peter Tiño:
Making sense of sparse rating data in collaborative filtering via topographic organization of user preference patterns. Neural Networks 17(8-9): 1183-1199 (2004) - [j12]Peter Tiño, Michal Cernanský, Lubica Benusková:
Markovian architectural bias of recurrent neural networks. IEEE Trans. Neural Networks 15(1): 6-15 (2004) - [c16]Peter Tiño, Barbara Hammer:
On Early Stages of Learning in Connectionist Models with Feedback Connections. AAAI Technical Report (3) 2004: 69-71 - [c15]Gabriela Polcicová, Peter Tiño:
Introducing a Star Topology into Latent Class Models for Collaborative Filtering. AIAI 2004: 293-303 - [c14]Peter Tiño, Ata Kabán, Yi Sun:
A generative probabilistic approach to visualizing sets of symbolic sequences. KDD 2004: 701-706 - [c13]Richard Price, Peter Tiño:
Evaluation of Adaptive Nature Inspired Task Allocation Against Alternate Decentralised Multiagent Strategies. PPSN 2004: 982-990 - [e1]Xin Yao, Edmund K. Burke, José Antonio Lozano, Jim Smith, Juan Julián Merelo Guervós, John A. Bullinaria, Jonathan E. Rowe, Peter Tiño, Ata Kabán, Hans-Paul Schwefel:
Parallel Problem Solving from Nature - PPSN VIII, 8th International Conference, Birmingham, UK, September 18-22, 2004, Proceedings. Lecture Notes in Computer Science 3242, Springer 2004, ISBN 3-540-23092-0 [contents] - 2003
- [j11]Barbara Hammer, Peter Tiño:
Recurrent Neural Networks with Small Weights Implement Definite Memory Machines. Neural Comput. 15(8): 1897-1929 (2003) - [j10]Peter Tiño, Barbara Hammer:
Architectural Bias in Recurrent Neural Networks: Fractal Analysis. Neural Comput. 15(8): 1931-1957 (2003) - 2002
- [j9]Peter Tiño, Ian T. Nabney:
Hierarchical GTM: Constructing Localized Nonlinear Projection Manifolds in a Principled Way. IEEE Trans. Pattern Anal. Mach. Intell. 24(5): 639-656 (2002) - [c12]Peter Tiño, Barbara Hammer:
Architectural Bias in Recurrent Neural Networks - Fractal Analysis. ICANN 2002: 1359-1364 - [c11]Ata Kabán, Peter Tiño, Mark A. Girolami:
A General Framework for a Principled Hierarchical Visualization of Multivariate Data. IDEAL 2002: 518-523 - 2001
- [j8]Peter Tiño, Georg Dorffner:
Predicting the Future of Discrete Sequences from Fractal Representations of the Past. Mach. Learn. 45(2): 187-217 (2001) - [j7]Peter Tiño, Bill G. Horne, C. Lee Giles:
Attractive Periodic Sets in Discrete-Time Recurrent Networks (with Emphasis on Fixed-Point Stability and Bifurcations in Two-Neuron Networks). Neural Comput. 13(6): 1379-1414 (2001) - [j6]Peter Tiño, Christian Schittenkopf, Georg Dorffner:
Volatility Trading ia Temporal Pattern Recognition in Quantised Financial Time Series. Pattern Anal. Appl. 4(4): 283-299 (2001) - [j5]Peter Tiño, Christian Schittenkopf, Georg Dorffner:
Financial volatility trading using recurrent neural networks. IEEE Trans. Neural Networks 12(4): 865-874 (2001) - [c10]Peter Tiño, Ian T. Nabney, Yi Sun:
Using Directional Curvatures to Visualize Folding Patterns of the GTM Projection Manifolds. ICANN 2001: 421-428 - 2000
- [c9]Christian Schittenkopf, Peter Tiño, Georg Dorffner:
The profitability of trading volatility using real-valued and symbolic models. CIFEr 2000: 8-11 - [c8]Peter Tiño, Michal Stancík, Lubica Benusková:
Building Predictive Models on Complex Symbolic Sequences with a Second-Order Recurrent BCM Network with Lateral Inhibition. IJCNN (2) 2000: 265-270
1990 – 1999
- 1999
- [j4]Peter Tiño, Miroslav Koteles:
Extracting finite-state representations from recurrent neural networks trained on chaotic symbolic sequences. IEEE Trans. Neural Networks 10(2): 284-302 (1999) - [j3]Peter Tiño:
Spatial representation of symbolic sequences through iterative function systems. IEEE Trans. Syst. Man Cybern. Part A 29(4): 386-393 (1999) - [c7]Shan Parfitt, Peter Tiño, Georg Dorffner:
Graded Grammaticality in Prediction Fractal Machines. NIPS 1999: 52-58 - [c6]Peter Tiño, Georg Dorffner:
Building Predictive Models from Fractal Representations of Symbolic Sequences. NIPS 1999: 645-651 - 1998
- [c5]Peter Tiño, Georg Dorffner, Christian Schittenkopf:
Understanding State Space Organization in Recurrent Neural Networks with Iterative Function Systems Dynamics. Hybrid Neural Systems 1998: 255-269 - [c4]Peter Tiño, Georg Dorffner:
Recurrent Neural Networks with Iterated Function Systems Dynamics. NC 1998: 526-532 - 1997
- [c3]Peter Tiño, V. Vojtek:
Modeling Complex Symbolic Sequences with Neural Based Systems. ICANNGA 1997: 459-463 - [c2]Peter Tiño, V. Vojtek:
Extracting stochastic machines from recurrent neural networks trained on complex symbolic sequences. KES (2) 1997: 551-558 - 1996
- [j2]Tsungnan Lin, Bill G. Horne, Peter Tiño, C. Lee Giles:
Learning long-term dependencies in NARX recurrent neural networks. IEEE Trans. Neural Networks 7(6): 1329-1338 (1996) - 1995
- [j1]Peter Tiño, Jozef Sajda:
Learning and Extracting Initial Mealy Automata with a Modular Neural Network Model. Neural Comput. 7(4): 822-844 (1995) - [c1]Tsungnan Lin, Bill G. Horne, Peter Tiño, C. Lee Giles:
Learning long-term dependencies is not as difficult with NARX networks. NIPS 1995: 577-583
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-10 20:49 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint