default search action
Samet Oymak
Person information
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c71]Karthik Elamvazhuthi, Xuechen Zhang, Matthew Jacobs, Samet Oymak, Fabio Pasqualetti:
A Score-Based Deterministic Diffusion Algorithm with Smooth Scores for General Distributions. AAAI 2024: 11866-11873 - [c70]Xuechen Zhang, Mingchen Li, Jiasi Chen, Christos Thrampoulidis, Samet Oymak:
Class-Attribute Priors: Adapting Optimization to Heterogeneity and Fairness Objective. AAAI 2024: 16890-16898 - [c69]Yingcong Li, Yixiao Huang, Muhammed Emrullah Ildiz, Ankit Singh Rawat, Samet Oymak:
Mechanics of Next Token Prediction with Self-Attention. AISTATS 2024: 685-693 - [c68]Muhammed Emrullah Ildiz, Zhe Zhao, Samet Oymak:
Understanding Inverse Scaling and Emergence in Multitask Representation Learning. AISTATS 2024: 4726-4734 - [c67]Muhammed Emrullah Ildiz, Yixiao Huang, Yingcong Li, Ankit Singh Rawat, Samet Oymak:
From Self-Attention to Markov Models: Unveiling the Dynamics of Generative Transformers. ICML 2024 - [c66]Jongho Park, Jaeseung Park, Zheyang Xiong, Nayoung Lee, Jaewoong Cho, Samet Oymak, Kangwook Lee, Dimitris Papailiopoulos:
Can Mamba Learn How To Learn? A Comparative Study on In-Context Learning Tasks. ICML 2024 - [c65]Fahim Faisal Niloy, Sk Miraj Ahmed, Dripta S. Raychaudhuri, Samet Oymak, Amit K. Roy-Chowdhury:
Effective Restoration of Source Knowledge in Continual Test Time Adaptation. WACV 2024: 2080-2089 - [i79]Sk Miraj Ahmed, Fahim Faisal Niloy, Dripta S. Raychaudhuri, Samet Oymak, Amit K. Roy-Chowdhury:
MeTA: Multi-source Test Time Adaptation. CoRR abs/2401.02561 (2024) - [i78]Xiangyu Chang, Sk Miraj Ahmed, Srikanth V. Krishnamurthy, Basak Guler, Ananthram Swami, Samet Oymak, Amit K. Roy-Chowdhury:
Plug-and-Play Transformer Modules for Test-Time Adaptation. CoRR abs/2401.04130 (2024) - [i77]Xuechen Zhang, Mingchen Li, Jiasi Chen, Christos Thrampoulidis, Samet Oymak:
Class-attribute Priors: Adapting Optimization to Heterogeneity and Fairness Objective. CoRR abs/2401.14343 (2024) - [i76]Jongho Park, Jaeseung Park, Zheyang Xiong, Nayoung Lee, Jaewoong Cho, Samet Oymak, Kangwook Lee, Dimitris Papailiopoulos:
Can Mamba Learn How to Learn? A Comparative Study on In-Context Learning Tasks. CoRR abs/2402.04248 (2024) - [i75]Xiangyu Chang, Sk Miraj Ahmed, Srikanth V. Krishnamurthy, Basak Guler, Ananthram Swami, Samet Oymak, Amit K. Roy-Chowdhury:
FLASH: Federated Learning Across Simultaneous Heterogeneities. CoRR abs/2402.08769 (2024) - [i74]Muhammed Emrullah Ildiz, Yixiao Huang, Yingcong Li, Ankit Singh Rawat, Samet Oymak:
From Self-Attention to Markov Models: Unveiling the Dynamics of Generative Transformers. CoRR abs/2402.13512 (2024) - [i73]Yingcong Li, Yixiao Huang, Muhammed Emrullah Ildiz, Ankit Singh Rawat, Samet Oymak:
Mechanics of Next Token Prediction with Self-Attention. CoRR abs/2403.08081 (2024) - [i72]Xuechen Zhang, Zijian Huang, Ege Onur Taga, Carlee Joe-Wong, Samet Oymak, Jiasi Chen:
TREACLE: Thrifty Reasoning via Context-Aware LLM and Prompt Selection. CoRR abs/2404.13082 (2024) - [i71]Mingchen Li, Xuechen Zhang, Yixiao Huang, Samet Oymak:
On the Power of Convolution Augmented Transformer. CoRR abs/2407.05591 (2024) - [i70]Yingcong Li, Ankit Singh Rawat, Samet Oymak:
Fine-grained Analysis of In-context Linear Estimation: Data, Architecture, and Beyond. CoRR abs/2407.10005 (2024) - 2023
- [j12]Zhe Du, Haldun Balim, Samet Oymak, Necmiye Ozay:
Can Transformers Learn Optimal Filtering for Unknown Systems? IEEE Control. Syst. Lett. 7: 3525-3530 (2023) - [c64]Yingcong Li, Samet Oymak:
Provable Pathways: Learning Multiple Tasks over Multiple Paths. AAAI 2023: 8701-8710 - [c63]Yuzhen Qin, Yingcong Li, Fabio Pasqualetti, Maryam Fazel, Samet Oymak:
Stochastic Contextual Bandits with Long Horizon Rewards. AAAI 2023: 9525-9533 - [c62]Yingcong Li, Samet Oymak:
On The Fairness of Multitask Representation Learning. ICASSP 2023: 1-5 - [c61]Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, Samet Oymak:
Transformers as Algorithms: Generalization and Stability in In-context Learning. ICML 2023: 19565-19594 - [c60]Samet Oymak, Ankit Singh Rawat, Mahdi Soltanolkotabi, Christos Thrampoulidis:
On the Role of Attention in Prompt-tuning. ICML 2023: 26724-26768 - [c59]Karthik Elamvazhuthi, Xuechen Zhang, Samet Oymak, Fabio Pasqualetti:
Learning on Manifolds: Universal Approximations Properties using Geometric Controllability Conditions for Neural ODEs. L4DC 2023: 1-11 - [c58]Yingcong Li, Kartik Sreenivasan, Angeliki Giannou, Dimitris Papailiopoulos, Samet Oymak:
Dissecting Chain-of-Thought: Compositionality through In-Context Filtering and Learning. NeurIPS 2023 - [c57]Davoud Ataee Tarzanagh, Yingcong Li, Xuechen Zhang, Samet Oymak:
Max-Margin Token Selection in Attention Mechanism. NeurIPS 2023 - [c56]Xuechen Zhang, Zheng Li, Samet Oymak, Jiasi Chen:
Text-to-3D Generative AI on Mobile Devices: Measurements and Optimizations. EMS@SIGCOMM 2023: 8-14 - [i69]Yingcong Li, Muhammed Emrullah Ildiz, Dimitris S. Papailiopoulos, Samet Oymak:
Transformers as Algorithms: Generalization and Implicit Model Selection in In-context Learning. CoRR abs/2301.07067 (2023) - [i68]Yuzhen Qin, Yingcong Li, Fabio Pasqualetti, Maryam Fazel, Samet Oymak:
Stochastic Contextual Bandits with Long Horizon Rewards. CoRR abs/2302.00814 (2023) - [i67]Yingcong Li, Samet Oymak:
Provable Pathways: Learning Multiple Tasks over Multiple Paths. CoRR abs/2303.04338 (2023) - [i66]Karthik Elamvazhuthi, Xuechen Zhang, Samet Oymak, Fabio Pasqualetti:
Learning on Manifolds: Universal Approximations Properties using Geometric Controllability Conditions for Neural ODEs. CoRR abs/2305.08849 (2023) - [i65]Yingcong Li, Kartik Sreenivasan, Angeliki Giannou, Dimitris S. Papailiopoulos, Samet Oymak:
Dissecting Chain-of-Thought: A Study on Compositional In-Context Learning of MLPs. CoRR abs/2305.18869 (2023) - [i64]Davoud Ataee Tarzanagh, Mingchen Li, Pranay Sharma, Samet Oymak:
Federated Multi-Sequence Stochastic Approximation with Local Hypergradient Estimation. CoRR abs/2306.01648 (2023) - [i63]Samet Oymak, Ankit Singh Rawat, Mahdi Soltanolkotabi, Christos Thrampoulidis:
On the Role of Attention in Prompt-tuning. CoRR abs/2306.03435 (2023) - [i62]Davoud Ataee Tarzanagh, Yingcong Li, Xuechen Zhang, Samet Oymak:
Max-Margin Token Selection in Attention Mechanism. CoRR abs/2306.13596 (2023) - [i61]Xuechen Zhang, Mingchen Li, Xiangyu Chang, Jiasi Chen, Amit K. Roy-Chowdhury, Ananda Theertha Suresh, Samet Oymak:
FedYolo: Augmenting Federated Learning with Pretrained Transformers. CoRR abs/2307.04905 (2023) - [i60]Haldun Balim, Zhe Du, Samet Oymak, Necmiye Ozay:
Can Transformers Learn Optimal Filtering for Unknown Systems? CoRR abs/2308.08536 (2023) - [i59]Davoud Ataee Tarzanagh, Yingcong Li, Christos Thrampoulidis, Samet Oymak:
Transformers as Support Vector Machines. CoRR abs/2308.16898 (2023) - [i58]Fahim Faisal Niloy, Sk Miraj Ahmed, Dripta S. Raychaudhuri, Samet Oymak, Amit K. Roy-Chowdhury:
Effective Restoration of Source Knowledge in Continual Test Time Adaptation. CoRR abs/2311.04991 (2023) - [i57]Karthik Elamvazhuthi, Samet Oymak, Fabio Pasqualetti:
Noise in the reverse process improves the approximation capabilities of diffusion models. CoRR abs/2312.07851 (2023) - 2022
- [j11]Yahya Sattar, Samet Oymak:
Non-asymptotic and Accurate Learning of Nonlinear Dynamical Systems. J. Mach. Learn. Res. 23: 140:1-140:49 (2022) - [j10]Samet Oymak, Necmiye Ozay:
Revisiting Ho-Kalman-Based System Identification: Robustness and Finite-Sample Analysis. IEEE Trans. Autom. Control. 67(4): 1914-1928 (2022) - [c55]Yuzhen Qin, Tommaso Menara, Samet Oymak, ShiNung Ching, Fabio Pasqualetti:
Representation Learning for Context-Dependent Decision-Making. ACC 2022: 2130-2135 - [c54]Yahya Sattar, Zhe Du, Davoud Ataee Tarzanagh, Samet Oymak, Laura Balzano, Necmiye Ozay:
Certainty Equivalent Quadratic Control for Markov Jump Systems. ACC 2022: 2871-2878 - [c53]Zhe Du, Yahya Sattar, Davoud Ataee Tarzanagh, Laura Balzano, Necmiye Ozay, Samet Oymak:
Data-Driven Control of Markov Jump Systems: Sample Complexity and Regret Bounds. ACC 2022: 4901-4908 - [c52]Yahya Sattar, Samet Oymak, Necmiye Ozay:
Finite Sample Identification of Bilinear Dynamical Systems. CDC 2022: 6705-6711 - [c51]Davoud Ataee Tarzanagh, Mingchen Li, Christos Thrampoulidis, Samet Oymak:
FedNest: Federated Bilevel, Minimax, and Compositional Optimization. ICML 2022: 21146-21179 - [i56]Mingchen Li, Xuechen Zhang, Christos Thrampoulidis, Jiasi Chen, Samet Oymak:
AutoBalance: Optimized Loss Functions for Imbalanced Data. CoRR abs/2201.01212 (2022) - [i55]Yuzhen Qin, Tommaso Menara, Samet Oymak, ShiNung Ching, Fabio Pasqualetti:
Non-Stationary Representation Learning in Sequential Linear Bandits. CoRR abs/2201.04805 (2022) - [i54]Yue Sun, Adhyyan Narang, Halil Ibrahim Gulluk, Samet Oymak, Maryam Fazel:
Towards Sample-efficient Overparameterized Meta-learning. CoRR abs/2201.06142 (2022) - [i53]Yingcong Li, Mingchen Li, M. Salman Asif, Samet Oymak:
Provable and Efficient Continual Representation Learning. CoRR abs/2203.02026 (2022) - [i52]Yue Sun, Samet Oymak, Maryam Fazel:
System Identification via Nuclear Norm Regularization. CoRR abs/2203.16673 (2022) - [i51]Davoud Ataee Tarzanagh, Mingchen Li, Christos Thrampoulidis, Samet Oymak:
FEDNEST: Federated Bilevel, Minimax, and Compositional Optimization. CoRR abs/2205.02215 (2022) - [i50]Yuzhen Qin, Tommaso Menara, Samet Oymak, ShiNung Ching, Fabio Pasqualetti:
Representation Learning for Context-Dependent Decision-Making. CoRR abs/2205.05820 (2022) - [i49]Yahya Sattar, Samet Oymak, Necmiye Ozay:
Finite Sample Identification of Bilinear Dynamical Systems. CoRR abs/2208.13915 (2022) - 2021
- [j9]Nhat X. T. Le, A. B. Siddique, Fuad T. Jamour, Samet Oymak, Vagelis Hristidis:
Generating Predictable and Adaptive Dialog Policies in Single- and Multi-domain Goal-oriented Dialog Systems. Int. J. Semantic Comput. 15(4): 419-439 (2021) - [j8]Samet Oymak:
Provable Super-Convergence With a Large Cyclical Learning Rate. IEEE Signal Process. Lett. 28: 1645-1649 (2021) - [c50]Xiangyu Chang, Yingcong Li, Samet Oymak, Christos Thrampoulidis:
Provable Benefits of Overparameterization in Model Compression: From Double Descent to Pruning Neural Networks. AAAI 2021: 6974-6983 - [c49]Samet Oymak, Talha Cihad Gulcu:
A Theoretical Characterization of Semi-supervised Learning with Self-training for Gaussian Mixture Models. AISTATS 2021: 3601-3609 - [c48]Maryam Shahcheraghi, Trevor Cappon, Samet Oymak, Evangelos E. Papalexakis, Eamonn J. Keogh, Zachary Zimmerman, Philip Brisk:
Matrix Profile Index Approximation for Streaming Time Series. IEEE BigData 2021: 2775-2784 - [c47]Sk Miraj Ahmed, Dripta S. Raychaudhuri, Sujoy Paul, Samet Oymak, Amit K. Roy-Chowdhury:
Unsupervised Multi-Source Domain Adaptation Without Access to Source Data. CVPR 2021: 10103-10112 - [c46]Mohammad Reza Shahneh, Samet Oymak, Amr Magdy:
A-GWR: Fast and Accurate Geospatial Inference via Augmented Geographically Weighted Regression. SIGSPATIAL/GIS 2021: 564-575 - [c45]Yao-Chun Chan, Mingchen Li, Samet Oymak:
On the Marginal Benefit of Active Learning: Does Self-Supervision Eat its Cake? ICASSP 2021: 3455-3459 - [c44]Halil Ibrahim Gulluk, Yue Sun, Samet Oymak, Maryam Fazel:
Sample Efficient Subspace-Based Representations for Nonlinear Meta-Learning. ICASSP 2021: 3685-3689 - [c43]Samet Oymak, Mingchen Li, Mahdi Soltanolkotabi:
Generalization Guarantees for Neural Architecture Search with Train-Validation Split. ICML 2021: 8291-8301 - [c42]Mingchen Li, Xuechen Zhang, Christos Thrampoulidis, Jiasi Chen, Samet Oymak:
AutoBalance: Optimized Loss Functions for Imbalanced Data. NeurIPS 2021: 3163-3177 - [c41]Ganesh Ramachandra Kini, Orestis Paraskevas, Samet Oymak, Christos Thrampoulidis:
Label-Imbalanced and Group-Sensitive Classification under Overparameterization. NeurIPS 2021: 18970-18983 - [c40]Yue Sun, Adhyyan Narang, Halil Ibrahim Gulluk, Samet Oymak, Maryam Fazel:
Towards Sample-efficient Overparameterized Meta-learning. NeurIPS 2021: 28156-28168 - [c39]Nhat X. T. Le, A. B. Siddique, Fuad T. Jamour, Samet Oymak, Vagelis Hristidis:
Predictable and Adaptive Goal-oriented Dialog Policy Generation. ICSC 2021: 40-47 - [i48]Halil Ibrahim Gulluk, Yue Sun, Samet Oymak, Maryam Fazel:
Sample Efficient Subspace-based Representations for Nonlinear Meta-Learning. CoRR abs/2102.07206 (2021) - [i47]Samet Oymak:
Super-Convergence with an Unstable Learning Rate. CoRR abs/2102.10734 (2021) - [i46]Ganesh Ramachandra Kini, Orestis Paraskevas, Samet Oymak, Christos Thrampoulidis:
Label-Imbalanced and Group-Sensitive Classification under Overparameterization. CoRR abs/2103.01550 (2021) - [i45]Sk Miraj Ahmed, Dripta S. Raychaudhuri, Sujoy Paul, Samet Oymak, Amit K. Roy-Chowdhury:
Unsupervised Multi-source Domain Adaptation Without Access to Source Data. CoRR abs/2104.01845 (2021) - [i44]Samet Oymak, Mingchen Li, Mahdi Soltanolkotabi:
Generalization Guarantees for Neural Architecture Search with Train-Validation Split. CoRR abs/2104.14132 (2021) - [i43]Zhe Du, Yahya Sattar, Davoud Ataee Tarzanagh, Laura Balzano, Samet Oymak, Necmiye Ozay:
Certainty Equivalent Quadratic Control for Markov Jump Systems. CoRR abs/2105.12358 (2021) - [i42]Xuechen Zhang, Samet Oymak, Jiasi Chen:
Post-hoc Models for Performance Estimation of Machine Learning Inference. CoRR abs/2110.02459 (2021) - [i41]Yahya Sattar, Zhe Du, Davoud Ataee Tarzanagh, Laura Balzano, Necmiye Ozay, Samet Oymak:
Identification and Adaptive Control of Markov Jump Systems: Sample Complexity and Regret Bounds. CoRR abs/2111.07018 (2021) - 2020
- [j7]Samet Oymak, Mahdi Soltanolkotabi:
Toward Moderate Overparameterization: Global Convergence Guarantees for Training Shallow Neural Networks. IEEE J. Sel. Areas Inf. Theory 1(1): 84-105 (2020) - [j6]Yahya Sattar, Samet Oymak:
Quickly Finding the Best Linear Model in High Dimensions via Projected Gradient Descent. IEEE Trans. Signal Process. 68: 818-829 (2020) - [c38]Mingchen Li, Mahdi Soltanolkotabi, Samet Oymak:
Gradient Descent with Early Stopping is Provably Robust to Label Noise for Overparameterized Neural Networks. AISTATS 2020: 4313-4324 - [c37]Ahmet Demirkaya, Jiasi Chen, Samet Oymak:
Exploring the Role of Loss Functions in Multiclass Classification. CISS 2020: 1-5 - [c36]Hisham Alhulayyil, Kittipat Apicharttrisorn, Jiasi Chen, Karthikeyan Sundaresan, Samet Oymak, Srikanth V. Krishnamurthy:
WOLT: Auto-Configuration of Integrated Enterprise PLC-WiFi Networks. ICDCS 2020: 563-573 - [c35]A. B. Siddique, Samet Oymak, Vagelis Hristidis:
Unsupervised Paraphrasing via Deep Reinforcement Learning. KDD 2020: 1800-1809 - [c34]Yue Sun, Samet Oymak, Maryam Fazel:
Finite Sample System Identification: Optimal Rates and the Role of Regularization. L4DC 2020: 16-25 - [c33]Christos Thrampoulidis, Samet Oymak, Mahdi Soltanolkotabi:
Theoretical Insights Into Multiclass Classification: A High-dimensional Asymptotic View. NeurIPS 2020 - [i40]Yahya Sattar, Samet Oymak:
Non-asymptotic and Accurate Learning of Nonlinear Dynamical Systems. CoRR abs/2002.08538 (2020) - [i39]Yuan Zhao, Jiasi Chen, Samet Oymak:
On the Role of Dataset Quality and Heterogeneity in Model Confidence. CoRR abs/2002.09831 (2020) - [i38]Mingchen Li, Yahya Sattar, Christos Thrampoulidis, Samet Oymak:
Exploring Weight Importance and Hessian Bias in Model Pruning. CoRR abs/2006.10903 (2020) - [i37]Samet Oymak, Talha Cihad Gulcu:
Statistical and Algorithmic Insights for Semi-supervised Learning with Self-training. CoRR abs/2006.11006 (2020) - [i36]A. B. Siddique, Samet Oymak, Vagelis Hristidis:
Unsupervised Paraphrasing via Deep Reinforcement Learning. CoRR abs/2007.02244 (2020) - [i35]Christos Thrampoulidis, Samet Oymak, Mahdi Soltanolkotabi:
Theoretical Insights Into Multiclass Classification: A High-dimensional Asymptotic View. CoRR abs/2011.07729 (2020) - [i34]Yao-Chun Chan, Mingchen Li, Samet Oymak:
On the Marginal Benefit of Active Learning: Does Self-Supervision Eat Its Cake? CoRR abs/2011.08121 (2020) - [i33]Xiangyu Chang, Yingcong Li, Samet Oymak, Christos Thrampoulidis:
Provable Benefits of Overparameterization in Model Compression: From Double Descent to Pruning Neural Networks. CoRR abs/2012.08749 (2020)
2010 – 2019
- 2019
- [c32]Samet Oymak, Zalan Fabian, Mingchen Li, Mahdi Soltanolkotabi:
Generalization, Adaptation and Low-Rank Representation in Neural Networks. ACSSC 2019: 581-585 - [c31]Samet Oymak, Necmiye Ozay:
Non-asymptotic Identification of LTI Systems from a Single Trajectory. ACC 2019: 5655-5661 - [c30]Yahya Sattar, Samet Oymak:
A Simple Framework for Learning Stabilizable Systems. CAMSAP 2019: 116-120 - [c29]Samet Oymak:
Stochastic Gradient Descent Learns State Equations with Nonlinear Activations. COLT 2019: 2551-2579 - [c28]Samet Oymak, M. Salman Asif:
Exactly Decoding a Vector through Relu Activation. ICASSP 2019: 3607-3611 - [c27]Zachary Zimmerman, Nader Shakibay Senobari, Gareth J. Funning, Evangelos E. Papalexakis, Samet Oymak, Philip Brisk, Eamonn J. Keogh:
Matrix Profile XVIII: Time Series Mining in the Face of Fast Moving Streams using a Learned Approximate Matrix Profile. ICDM 2019: 936-945 - [c26]Samet Oymak, Mahdi Soltanolkotabi:
Overparameterized Nonlinear Learning: Gradient Descent Takes the Shortest Path? ICML 2019: 4951-4960 - [c25]Samet Oymak, Mehrdad Mahdavi, Jiasi Chen:
Learning Feature Nonlinearities with Regularized Binned Regression. ISIT 2019: 1452-1456 - [i32]Samet Oymak, Mahdi Soltanolkotabi:
Towards moderate overparameterization: global convergence guarantees for training shallow neural networks. CoRR abs/1902.04674 (2019) - [i31]Mingchen Li, Mahdi Soltanolkotabi, Samet Oymak:
Gradient Descent with Early Stopping is Provably Robust to Label Noise for Overparameterized Neural Networks. CoRR abs/1903.11680 (2019) - [i30]Samet Oymak, Zalan Fabian, Mingchen Li, Mahdi Soltanolkotabi:
Generalization Guarantees for Neural Networks via Harnessing the Low-rank Structure of the Jacobian. CoRR abs/1906.05392 (2019) - [i29]Yahya Sattar, Samet Oymak:
Quickly Finding the Best Linear Model in High Dimensions. CoRR abs/1907.01728 (2019) - 2018
- [j5]Samet Oymak, Benjamin Recht, Mahdi Soltanolkotabi:
Sharp Time-Data Tradeoffs for Linear Inverse Problems. IEEE Trans. Inf. Theory 64(6): 4129-4158 (2018) - [c24]Samet Oymak:
Learning Compact Neural Networks with Regularization. ICML 2018: 3963-3972 - [i28]Samet Oymak:
Learning Compact Neural Networks with Regularization. CoRR abs/1802.01223 (2018) - [i27]Samet Oymak, Mahdi Soltanolkotabi:
End-to-end Learning of a Convolutional Neural Network via Deep Tensor Decomposition. CoRR abs/1805.06523 (2018) - [i26]Amir Asiaee T., Samet Oymak, Kevin R. Coombes, Arindam Banerjee:
High Dimensional Data Enrichment: Interpretable, Fast, and Data-Efficient. CoRR abs/1806.04047 (2018) - [i25]Samet Oymak, Necmiye Ozay:
Non-asymptotic Identification of LTI Systems from a Single Trajectory. CoRR abs/1806.05722 (2018) - [i24]Samet Oymak:
Stochastic Gradient Descent Learns State Equations with Nonlinear Activations. CoRR abs/1809.03019 (2018) - [i23]Samet Oymak, Mahdi Soltanolkotabi:
Overparameterized Nonlinear Learning: Gradient Descent Takes the Shortest Path? CoRR abs/1812.10004 (2018) - 2017
- [j4]Samet Oymak, Mahdi Soltanolkotabi:
Fast and Reliable Parameter Estimation from Nonlinear Observations. SIAM J. Optim. 27(4): 2276-2300 (2017) - [j3]Kishore Jaganathan, Samet Oymak, Babak Hassibi:
Sparse Phase Retrieval: Uniqueness Guarantees and Recovery Algorithms. IEEE Trans. Signal Process. 65(9): 2402-2410 (2017) - [c23]Samet Oymak, Christos Thrampoulidis, Babak Hassibi:
Near-optimal sample complexity bounds for circulant binary embedding. ICASSP 2017: 6359-6363 - [i22]Samet Oymak, Mehrdad Mahdavi, Jiasi Chen:
Learning Feature Nonlinearities with Non-Convex Regularized Binned Regression. CoRR abs/1705.07256 (2017) - 2016
- [j2]Samet Oymak, Babak Hassibi:
Sharp MSE Bounds for Proximal Denoising. Found. Comput. Math. 16(4): 965-1029 (2016) - [i21]Samet Oymak:
Near-Optimal Sample Complexity Bounds for Circulant Binary Embedding. CoRR abs/1603.03178 (2016) - [i20]Samet Oymak, Mahdi Soltanolkotabi:
Fast and Reliable Parameter Estimation from Nonlinear Observations. CoRR abs/1610.07108 (2016) - 2015
- [j1]Samet Oymak, Amin Jalali, Maryam Fazel, Yonina C. Eldar, Babak Hassibi:
Simultaneously Structured Models With Application to Sparse and Low-Rank Matrices. IEEE Trans. Inf. Theory 61(5): 2886-2908 (2015) - [c22]Christos Thrampoulidis, Samet Oymak, Babak Hassibi:
Regularized Linear Regression: A Precise Analysis of the Estimation Error. COLT 2015: 1683-1709 - [c21]Samet Oymak, Babak Hassibi:
The proportional mean decomposition: A bridge between the Gaussian and bernoulli ensembles. ICASSP 2015: 3322-3326 - [c20]Xinghao Pan, Dimitris S. Papailiopoulos, Samet Oymak, Benjamin Recht, Kannan Ramchandran, Michael I. Jordan:
Parallel Correlation Clustering on Big Graphs. NIPS 2015: 82-90 - [i19]Samet Oymak, Benjamin Recht, Mahdi Soltanolkotabi:
Isometric sketching of any set via the Restricted Isometry Property. CoRR abs/1506.03521 (2015) - [i18]Samet Oymak, Benjamin Recht, Mahdi Soltanolkotabi:
Sharp Time-Data Tradeoffs for Linear Inverse Problems. CoRR abs/1507.04793 (2015) - [i17]Xinghao Pan, Dimitris S. Papailiopoulos, Samet Oymak, Benjamin Recht, Kannan Ramchandran, Michael I. Jordan:
Parallel Correlation Clustering on Big Graphs. CoRR abs/1507.05086 (2015) - [i16]Samet Oymak, Joel A. Tropp:
Universality laws for randomized dimension reduction, with applications. CoRR abs/1511.09433 (2015) - [i15]Samet Oymak, Ben Recht:
Near-Optimal Bounds for Binary Embeddings of Arbitrary Sets. CoRR abs/1512.04433 (2015) - 2014
- [c19]Ramya Korlakai Vinayak, Samet Oymak, Babak Hassibi:
Sharp performance bounds for graph clustering via convex optimization. ICASSP 2014: 8297-8301 - [c18]Christos Thrampoulidis, Samet Oymak, Babak Hassibi:
Simple error bounds for regularized noisy linear inverse problems. ISIT 2014: 3007-3011 - [c17]Samet Oymak, Babak Hassibi:
A case for orthogonal measurements in linear inverse problems. ISIT 2014: 3175-3179 - [c16]Ramya Korlakai Vinayak, Samet Oymak, Babak Hassibi:
Graph Clustering With Missing Data: Convex Algorithms and Analysis. NIPS 2014: 2996-3004 - [i14]Christos Thrampoulidis, Samet Oymak, Babak Hassibi:
Simple Error Bounds for Regularized Noisy Linear Inverse Problems. CoRR abs/1401.6578 (2014) - [i13]Christos Thrampoulidis, Samet Oymak, Babak Hassibi:
A Tight Version of the Gaussian min-max theorem in the Presence of Convexity. CoRR abs/1408.4837 (2014) - 2013
- [c15]Samet Oymak, Christos Thrampoulidis, Babak Hassibi:
The squared-error of generalized LASSO: A precise analysis. Allerton 2013: 1002-1009 - [c14]Samet Oymak, Amin Jalali, Maryam Fazel, Babak Hassibi:
Noisy estimation of simultaneously structured models: Limitations of convex relaxation. CDC 2013: 6019-6024 - [c13]Kishore Jaganathan, Samet Oymak, Babak Hassibi:
Sparse phase retrieval: Convex algorithms and limitations. ISIT 2013: 1022-1026 - [i12]Kishore Jaganathan, Samet Oymak, Babak Hassibi:
Sparse Phase Retrieval: Convex Algorithms and Limitations. CoRR abs/1303.4128 (2013) - [i11]Samet Oymak, Babak Hassibi:
Asymptotically Exact Denoising in Relation to Compressed Sensing. CoRR abs/1305.2714 (2013) - [i10]Samet Oymak, Christos Thrampoulidis, Babak Hassibi:
The Squared-Error of Generalized LASSO: A Precise Analysis. CoRR abs/1311.0830 (2013) - [i9]Kishore Jaganathan, Samet Oymak, Babak Hassibi:
Sparse Phase Retrieval: Uniqueness Guarantees and Recovery Algorithms. CoRR abs/1311.2745 (2013) - [i8]Samet Oymak, Christos Thrampoulidis, Babak Hassibi:
Simple Bounds for Noisy Linear Inverse Problems with Exact Side Information. CoRR abs/1312.0641 (2013) - 2012
- [c12]Kishore Jaganathan, Samet Oymak, Babak Hassibi:
On robust phase retrieval for sparse signals. Allerton Conference 2012: 794-799 - [c11]Samet Oymak, Babak Hassibi:
On a relation between the minimax risk and the phase transitions of compressed recovery. Allerton Conference 2012: 1018-1025 - [c10]Kishore Jaganathan, Samet Oymak, Babak Hassibi:
Phase retrieval for sparse signals using rank minimization. ICASSP 2012: 3449-3452 - [c9]Anilesh K. Krishnaswamy, Samet Oymak, Babak Hassibi:
A simpler approach to weighted ℓ1 minimization. ICASSP 2012: 3621-3624 - [c8]Cheuk Ting Li, Samet Oymak, Babak Hassibi:
Deterministic phase guarantees for robust recovery in incoherent dictionaries. ICASSP 2012: 3817-3820 - [c7]Kishore Jaganathan, Samet Oymak, Babak Hassibi:
Recovery of sparse 1-D signals from the magnitudes of their Fourier transform. ISIT 2012: 1473-1477 - [c6]Samet Oymak, M. Amin Khajehnejad, Babak Hassibi:
Recovery threshold for optimal weight ℓ1 minimization. ISIT 2012: 2032-2036 - [i7]Samet Oymak, Babak Hassibi:
Recovering Jointly Sparse Signals via Joint Basis Pursuit. CoRR abs/1202.3531 (2012) - [i6]Kishore Jaganathan, Samet Oymak, Babak Hassibi:
Recovery of Sparse 1-D Signals from the Magnitudes of their Fourier Transform. CoRR abs/1206.1405 (2012) - [i5]Samet Oymak, Amin Jalali, Maryam Fazel, Yonina C. Eldar, Babak Hassibi:
Simultaneously Structured Models with Application to Sparse and Low-rank Matrices. CoRR abs/1212.3753 (2012) - 2011
- [c5]Samet Oymak, M. Amin Khajehnejad, Babak Hassibi:
Weighted compressed sensing and rank minimization. ICASSP 2011: 3736-3739 - [c4]Samet Oymak, M. Amin Khajehnejad, Babak Hassibi:
Improved thresholds for rank minimization. ICASSP 2011: 5988-5991 - [c3]Samet Oymak, M. Amin Khajehnejad, Babak Hassibi:
Subspace expanders and matrix rank minimization. ISIT 2011: 2308-2312 - [c2]Samet Oymak, Karthik Mohan, Maryam Fazel, Babak Hassibi:
A simplified approach to recovery conditions for low rank matrices. ISIT 2011: 2318-2322 - [c1]Samet Oymak, Babak Hassibi:
Tight recovery thresholds and robustness analysis for nuclear norm minimization. ISIT 2011: 2323-2327 - [i4]M. Amin Khajehnejad, Samet Oymak, Babak Hassibi:
Subspace Expanders and Matrix Rank Minimization. CoRR abs/1102.3947 (2011) - [i3]Samet Oymak, Karthik Mohan, Maryam Fazel, Babak Hassibi:
A Simplified Approach to Recovery Conditions for Low Rank Matrices. CoRR abs/1103.1178 (2011) - [i2]Samet Oymak, Babak Hassibi:
Finding Dense Clusters via "Low Rank + Sparse" Decomposition. CoRR abs/1104.5186 (2011) - 2010
- [i1]Samet Oymak, Babak Hassibi:
New Null Space Results and Recovery Thresholds for Matrix Rank Minimization. CoRR abs/1011.6326 (2010)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 21:25 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint