default search action
Jochen Garcke
Person information
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j18]Moritz Wolter, Felix Blanke, Jochen Garcke, Charles Tapley Hoyt:
ptwt - The PyTorch Wavelet Toolbox. J. Mach. Learn. Res. 25: 80:1-80:7 (2024) - [c30]Sara Hahner, Souhaib Attaiki, Jochen Garcke, Maks Ovsjanikov:
Unsupervised Representation Learning for Diverse Deformable Shape Collections. 3DV 2024: 1594-1604 - [c29]Arno Feiden, Biagio Paparella, Jochen Garcke:
Generalizing Diversity with the Signature Transform. GECCO Companion 2024: 275-278 - [c28]Yanying Zhou, Jochen Garcke:
Learning Crowd Behaviors in Navigation with Attention-based Spatial-Temporal Graphs. ICRA 2024: 5485-5491 - [i20]Yanying Zhou, Jochen Garcke:
Learning Crowd Behaviors in Navigation with Attention-based Spatial-Temporal Graphs. CoRR abs/2401.06226 (2024) - 2023
- [j17]Sebastian Mayer, Léo Françoso Dal Piccol Sotto, Jochen Garcke:
The Elements of Flexibility for Task-Performing Systems. IEEE Access 11: 8029-8056 (2023) - [j16]Anahita Pakiman, Jochen Garcke, Axel Schumacher:
Knowledge discovery assistants for crash simulations with graph algorithms and energy absorption features. Appl. Intell. 53(16): 19217-19236 (2023) - [j15]Jochen Garcke, Ribana Roscher:
Explainable Machine Learning. Mach. Learn. Knowl. Extr. 5(1): 169-170 (2023) - [j14]Laura von Rüden, Sebastian Mayer, Katharina Beckh, Bogdan Georgiev, Sven Giesselbach, Raoul Heese, Birgit Kirsch, Julius Pfrommer, Annika Pick, Rajkumar Ramamurthy, Michal Walczak, Jochen Garcke, Christian Bauckhage, Jannis Schuecker:
Informed Machine Learning - A Taxonomy and Survey of Integrating Prior Knowledge into Learning Systems. IEEE Trans. Knowl. Data Eng. 35(1): 614-633 (2023) - [c27]Arno Feiden, Jochen Garcke:
Overcoming Deceptive Rewards with Quality-Diversity. GECCO Companion 2023: 279-282 - [c26]Anahita Pakiman, Jochen Garcke, Axel Schumacher:
Graph Extraction for Assisting Crash Simulation Data Analysis. ICCS 2023: 171-185 - [c25]Laura von Rüden, Jochen Garcke, Christian Bauckhage:
How Does Knowledge Injection Help in Informed Machine Learning? IJCNN 2023: 1-8 - [i19]Léo Françoso Dal Piccol Sotto, Sebastian Mayer, Hemanth Janarthanam, Alexander Butz, Jochen Garcke:
Evolutionary Solution Adaption for Multi-Objective Metal Cutting Process Optimization. CoRR abs/2305.19775 (2023) - [i18]Anahita Pakiman, Jochen Garcke, Axel Schumacher:
Graph Extraction for Assisting Crash Simulation Data Analysis. CoRR abs/2306.09538 (2023) - [i17]Niklas Breustedt, Paolo Climaco, Jochen Garcke, Jan Hamaekers, Gitta Kutyniok, Dirk A. Lorenz, Rick Oerder, Chirag Varun Shukla:
On the Interplay of Subset Selection and Informed Graph Neural Networks. CoRR abs/2306.10066 (2023) - [i16]Paolo Climaco, Jochen Garcke:
Investigating minimizing the training set fill distance in machine learning regression. CoRR abs/2307.10988 (2023) - [i15]Sara Hahner, Souhaib Attaiki, Jochen Garcke, Maks Ovsjanikov:
Unsupervised Representation Learning for Diverse Deformable Shape Collections. CoRR abs/2310.18141 (2023) - 2022
- [j13]Moritz Wolter, Felix Blanke, Raoul Heese, Jochen Garcke:
Wavelet-packets for deepfake image analysis and detection. Mach. Learn. 111(11): 4295-4327 (2022) - [c24]Léo Françoso Dal Piccol Sotto, Sebastian Mayer, Jochen Garcke:
The pole balancing problem from the viewpoint of system flexibility. GECCO Companion 2022: 427-430 - [c23]Anahita Pakiman, Jochen Garcke:
Graph Modeling in Computer Assisted Automotive Development. ICKG 2022: 203-210 - [c22]Lokesh Veeramacheneni, Moritz Wolter, Reinhard Klein, Jochen Garcke:
Canonical convolutional neural networks. IJCNN 2022: 1-8 - [c21]Sara Hahner, Felix Kerkhoff, Jochen Garcke:
Transfer Learning Using Spectral Convolutional Autoencoders on Semi-Regular Surface Meshes. LoG 2022: 18 - [c20]Sara Hahner, Jochen Garcke:
Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes. WACV 2022: 2344-2353 - [i14]Sebastian Mayer, Léo Françoso Dal Piccol Sotto, Jochen Garcke:
The elements of flexibility for task-performing systems. CoRR abs/2206.00582 (2022) - [i13]Lokesh Veeramacheneni, Moritz Wolter, Reinhard Klein, Jochen Garcke:
Canonical convolutional neural networks. CoRR abs/2206.01509 (2022) - [i12]Anahita Pakiman, Jochen Garcke:
Graph Modeling in Computer Assisted Automotive Development. CoRR abs/2209.14910 (2022) - [i11]Sara Hahner, Felix Kerkhoff, Jochen Garcke:
Transfer Learning using Spectral Convolutional Autoencoders on Semi-Regular Surface Meshes. CoRR abs/2212.05810 (2022) - 2021
- [c19]Moritz Wolter, Jochen Garcke:
Adaptive wavelet pooling for convolutional neural networks. AISTATS 2021: 1936-1944 - [c18]Arno Schmetz, Christopher Vahl, Zhen Zhen, Daniel Reibert, Sebastian Mayer, Daniel Zontar, Jochen Garcke, Christian Brecher:
Decision Support by Interpretable Machine Learning in Acoustic Emission Based Cutting Tool Wear Prediction. IEEM 2021: 629-633 - [i10]Yanying Zhou, Shijie Li, Jochen Garcke:
R-SARL: Crowd-aware Navigation Based Deep Reinforcement Learning for Nonholonomic Robot in Complex Environments. CoRR abs/2105.13409 (2021) - [i9]Moritz Wolter, Felix Blanke, Charles Tapley Hoyt, Jochen Garcke:
Wavelet-Packet Powered Deepfake Image Detection. CoRR abs/2106.09369 (2021) - [i8]Sara Hahner, Jochen Garcke:
Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes. CoRR abs/2110.09401 (2021) - 2020
- [j12]Ribana Roscher, Bastian Bohn, Marco F. Duarte, Jochen Garcke:
Explainable Machine Learning for Scientific Insights and Discoveries. IEEE Access 8: 42200-42216 (2020) - [c17]Skylar Sible, Rodrigo Iza-Teran, Jochen Garcke, Nikola Aulig, Patricia Wollstadt:
A Compact Spectral Descriptor for Shape Deformations. ECAI 2020: 1930-1937 - [c16]Sara Hahner, Rodrigo Iza-Teran, Jochen Garcke:
Analysis and Prediction of Deforming 3D Shapes Using Oriented Bounding Boxes and LSTM Autoencoders. ICANN (1) 2020: 284-296 - [c15]Laura von Rüden, Sebastian Mayer, Rafet Sifa, Christian Bauckhage, Jochen Garcke:
Combining Machine Learning and Simulation to a Hybrid Modelling Approach: Current and Future Directions. IDA 2020: 548-560 - [i7]Skylar Sible, Rodrigo Iza-Teran, Jochen Garcke, Nikola Aulig, Patricia Wollstadt:
A Compact Spectral Descriptor for Shape Deformations. CoRR abs/2003.08758 (2020) - [i6]Sara Hahner, Rodrigo Iza-Teran, Jochen Garcke:
Analysis and Prediction of Deforming 3D Shapes using Oriented Bounding Boxes and LSTM Autoencoders. CoRR abs/2009.03782 (2020)
2010 – 2019
- 2019
- [j11]Rodrigo Iza-Teran, Jochen Garcke:
A Geometrical Method for Low-Dimensional Representations of Simulations. SIAM/ASA J. Uncertain. Quantification 7(2): 472-496 (2019) - [i5]Rodrigo Iza-Teran, Jochen Garcke:
A Geometrical Method for Low-Dimensional Representations of Simulations. CoRR abs/1903.07744 (2019) - [i4]Laura von Rüden, Sebastian Mayer, Jochen Garcke, Christian Bauckhage, Jannis Schücker:
Informed Machine Learning - Towards a Taxonomy of Explicit Integration of Knowledge into Machine Learning. CoRR abs/1903.12394 (2019) - [i3]Ribana Roscher, Bastian Bohn, Marco F. Duarte, Jochen Garcke:
Explainable Machine Learning for Scientific Insights and Discoveries. CoRR abs/1905.08883 (2019) - 2018
- [c14]Friedrich Solowjow, Dominik Baumann, Jochen Garcke, Sebastian Trimpe:
Event-Triggered Learning for Resource-Efficient Networked Control. ACC 2018: 6506-6512 - [i2]Friedrich Solowjow, Dominik Baumann, Jochen Garcke, Sebastian Trimpe:
Event-triggered Learning for Resource-efficient Networked Control. CoRR abs/1803.01802 (2018) - 2017
- [j10]Jochen Garcke, Axel Kröner:
Suboptimal Feedback Control of PDEs by Solving HJB Equations on Adaptive Sparse Grids. J. Sci. Comput. 70(1): 1-28 (2017) - [p3]Jochen Garcke, Mandar Pathare, Nikhil Prabakaran:
ModelCompare. Scientific Computing and Algorithms in Industrial Simulations 2017: 199-205 - [p2]Jochen Garcke, Rodrigo Iza-Teran, Marvin Marks, Mandar Pathare, Dirk Schollbach, Martin Stettner:
Dimensionality Reduction for the Analysis of Time Series Data from Wind Turbines. Scientific Computing and Algorithms in Industrial Simulations 2017: 317-339 - [p1]Dustin Feld, Jochen Garcke, Jia Liu, Eric Schricker, Thomas Soddemann, Yong Xue:
Energy-Efficiency and Performance Comparison of Aerosol Optical Depth Retrieval on Distributed Embedded SoC Architectures. Scientific Computing and Algorithms in Industrial Simulations 2017: 341-358 - 2016
- [j9]Jia Liu, Dustin Feld, Yong Xue, Jochen Garcke, Thomas Soddemann, Peiyuan Pan:
An efficient geosciences workflow on multi-core processors and GPUs: a case study for aerosol optical depth retrieval from MODIS satellite data. Int. J. Digit. Earth 9(8): 748-765 (2016) - [j8]Alvaro Aguilera, Richard Grunzke, Dirk Habich, Johannes Luong, Dirk Schollbach, Ulf Markwardt, Jochen Garcke:
Advancing a Gateway Infrastructure for Wind Turbine Data Analysis. J. Grid Comput. 14(4): 499-514 (2016) - [j7]Bastian Bohn, Jochen Garcke, Michael Griebel:
A sparse grid based method for generative dimensionality reduction of high-dimensional data. J. Comput. Phys. 309: 1-17 (2016) - 2015
- [j6]Jia Liu, Dustin Feld, Yong Xue, Jochen Garcke, Thomas Soddemann:
Multicore Processors and Graphics Processing Unit Accelerators for Parallel Retrieval of Aerosol Optical Depth From Satellite Data: Implementation, Performance, and Energy Efficiency. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 8(5): 2306-2317 (2015) - [i1]Jochen Garcke:
VAVID - Handling Big Data. ERCIM News 2015(101) (2015) - 2014
- [c13]Rodrigo Iza-Teran, Jochen Garcke:
Data Analytics for Simulation Repositories in Industry. GI-Jahrestagung 2014: 161-167 - [c12]Jochen Garcke, Thomas Vanck:
Importance Weighted Inductive Transfer Learning for Regression. ECML/PKDD (1) 2014: 466-481 - 2013
- [j5]Olivier Bokanowski, Jochen Garcke, Michael Griebel, Irene Klompmaker:
An Adaptive Sparse Grid Semi-Lagrangian Scheme for First Order Hamilton-Jacobi Bellman Equations. J. Sci. Comput. 55(3): 575-605 (2013) - [c11]Thomas Vanck, Jochen Garcke:
Using Hyperbolic Cross Approximation to measure and compensate Covariate Shift. ACML 2013: 435-450 - [c10]Bastian Bohn, Jochen Garcke, Rodrigo Iza-Teran, Alexander Paprotny, Benjamin Peherstorfer, Ulf Schepsmeier, Clemens-August Thole:
Analysis of Car Crash Simulation Data with Nonlinear Machine Learning Methods. ICCS 2013: 621-630 - 2012
- [c9]Alexander Paprotny, Jochen Garcke:
On a Connection between Maximum Variance Unfolding, Shortest Path Problems and IsoMap. AISTATS 2012: 859-867 - 2010
- [c8]Jochen Garcke:
Classification with Sums of Separable Functions. ECML/PKDD (1) 2010: 458-473
2000 – 2009
- 2009
- [j4]Jochen Garcke, Markus Hegland:
Fitting multidimensional data using gradient penalties and the sparse grid combination technique. Computing 84(1-2): 1-25 (2009) - [j3]Gregory Beylkin, Jochen Garcke, Martin J. Mohlenkamp:
Multivariate Regression and Machine Learning with Sums of Separable Functions. SIAM J. Sci. Comput. 31(3): 1840-1857 (2009) - [c7]Jochen Garcke:
A Dimension Adaptive Combination Technique Using Localised Adaptation Criteria. HPSC 2009: 115-125 - 2007
- [c6]Steffen Börm, Jochen Garcke:
Approximating Gaussian Processes with H2-Matrices. ECML 2007: 42-53 - 2006
- [c5]Jochen Garcke, Markus Hegland:
Fitting Multidimensional Data Using Gradient Penalties and Combination Techniques. HPSC 2006: 235-248 - [c4]Jochen Garcke:
Regression with the optimised combination technique. ICML 2006: 321-328 - 2004
- [b1]Jochen Garcke:
Maschinelles Lernen durch Funktionsrekonstruktion mit verallgemeinerten dünnen Gittern. University of Bonn, Germany, 2004, pp. 1-140 - 2003
- [c3]Jochen Garcke, Markus Hegland, Ole Møller Nielsen:
Parallelisation of Sparse Grids for Large Scale Data Analysis. International Conference on Computational Science 2003: 683-692 - 2002
- [j2]Jochen Garcke, Michael Griebel:
Classification with sparse grids using simplicial basis functions. Intell. Data Anal. 6(6): 483-502 (2002) - 2001
- [j1]Jochen Garcke, Michael Griebel, M. Thess:
Data Mining with Sparse Grids. Computing 67(3): 225-253 (2001) - [c2]Jochen Garcke, Michael Griebel:
Data mining with sparse grids using simplicial basis functions. KDD 2001: 87-96 - [c1]Jochen Garcke, Michael Griebel:
On the Parallelization of the Sparse Grid Approach for Data Mining. LSSC 2001: 22-32
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-15 20:47 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint