default search action
Bernard Haasdonk
Person information
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j30]Robin Herkert, Patrick Buchfink, Bernard Haasdonk:
Dictionary-based online-adaptive structure-preserving model order reduction for parametric Hamiltonian systems. Adv. Comput. Math. 50(1): 12 (2024) - [j29]Tobias Ehring, Bernard Haasdonk:
Hermite kernel surrogates for the value function of high-dimensional nonlinear optimal control problems. Adv. Comput. Math. 50(3): 36 (2024) - [j28]Johannes Rettberg, Dominik Wittwar, Patrick Buchfink, Robin Herkert, Jörg Fehr, Bernard Haasdonk:
Improved a posteriori error bounds for reduced port-Hamiltonian systems. Adv. Comput. Math. 50(5): 100 (2024) - [j27]Gabriele Santin, Tizian Wenzel, Bernard Haasdonk:
On the Optimality of Target-Data-Dependent Kernel Greedy Interpolation in Sobolev Reproducing Kernel Hilbert Spaces. SIAM J. Numer. Anal. 62(5): 2249-2275 (2024) - [i34]Robin Herkert, Patrick Buchfink, Bernard Haasdonk, Johannes Rettberg, Jörg Fehr:
Error Analysis of Randomized Symplectic Model Order Reduction for Hamiltonian systems. CoRR abs/2405.10465 (2024) - [i33]Robin Herkert, Patrick Buchfink, Tizian Wenzel, Bernard Haasdonk, Pavel Toktaliev, Oleg Iliev:
Greedy Kernel Methods for Approximating Breakthrough Curves for Reactive Flow from 3D Porous Geometry Data. CoRR abs/2405.19170 (2024) - [i32]Johannes Rettberg, Jonas Kneifl, Julius Herb, Patrick Buchfink, Jörg Fehr, Bernard Haasdonk:
Data-driven identification of latent port-Hamiltonian systems. CoRR abs/2408.08185 (2024) - 2023
- [j26]Patrick Buchfink, Silke Glas, Bernard Haasdonk:
Symplectic Model Reduction of Hamiltonian Systems on Nonlinear Manifolds and Approximation with Weakly Symplectic Autoencoder. SIAM J. Sci. Comput. 45(2): 289- (2023) - [j25]Bernard Haasdonk, Hendrik Kleikamp, Mario Ohlberger, Felix Schindler, Tizian Wenzel:
A New Certified Hierarchical and Adaptive RB-ML-ROM Surrogate Model for Parametrized PDEs. SIAM J. Sci. Comput. 45(3): 1039-1065 (2023) - [c20]Robin Herkert, Patrick Buchfink, Bernard Haasdonk, Johannes Rettberg, Jörg Fehr:
Randomized Symplectic Model Order Reduction for Hamiltonian Systems. LSSC 2023: 99-107 - [c19]Tizian Wenzel, Bernard Haasdonk, Hendrik Kleikamp, Mario Ohlberger, Felix Schindler:
Application of Deep Kernel Models for Certified and Adaptive RB-ML-ROM Surrogate Modeling. LSSC 2023: 117-125 - [i31]Tizian Wenzel, Bernard Haasdonk, Hendrik Kleikamp, Mario Ohlberger, Felix Schindler:
Application of Deep Kernel Models for Certified and Adaptive RB-ML-ROM Surrogate Modeling. CoRR abs/2302.14526 (2023) - [i30]Robin Herkert, Patrick Buchfink, Bernard Haasdonk, Johannes Rettberg, Jörg Fehr:
Randomized Symplectic Model Order Reduction for Hamiltonian Systems. CoRR abs/2303.04036 (2023) - [i29]Johannes Rettberg, Dominik Wittwar, Patrick Buchfink, Robin Herkert, Jörg Fehr, Bernard Haasdonk:
Improved a posteriori Error Bounds for Reduced port-Hamiltonian Systems. CoRR abs/2303.17329 (2023) - [i28]Robin Herkert, Patrick Buchfink, Bernard Haasdonk:
Dictionary-based Online-adaptive Structure-preserving Model Order Reduction for Parametric Hamiltonian Systems. CoRR abs/2303.18072 (2023) - [i27]Tobias Ehring, Bernard Haasdonk:
Hermite kernel surrogates for the value function of high-dimensional nonlinear optimal control problems. CoRR abs/2305.06122 (2023) - [i26]Gabriele Santin, Tizian Wenzel, Bernard Haasdonk:
On the optimality of target-data-dependent kernel greedy interpolation in Sobolev Reproducing Kernel Hilbert Spaces. CoRR abs/2307.09811 (2023) - [i25]Patrick Buchfink, Silke Glas, Bernard Haasdonk:
Approximation Bounds for Model Reduction on Polynomially Mapped Manifolds. CoRR abs/2312.00724 (2023) - [i24]Patrick Buchfink, Silke Glas, Bernard Haasdonk, Benjamin Unger:
Model Reduction on Manifolds: A differential geometric framework. CoRR abs/2312.01963 (2023) - 2022
- [c18]Raphael Leiteritz, Patrick Buchfink, Bernard Haasdonk, Dirk Pflüger:
Surrogate-data-enriched Physics-Aware Neural Networks. NLDL 2022 - [i23]Johannes Rettberg, Dominik Wittwar, Patrick Buchfink, Alexander Brauchler, Pascal Ziegler, Jörg Fehr, Bernard Haasdonk:
Port-Hamiltonian Fluid-Structure Interaction Modeling and Structure-Preserving Model Order Reduction of a Classical Guitar. CoRR abs/2203.10061 (2022) - [i22]Tizian Wenzel, Gabriele Santin, Bernard Haasdonk:
Stability of convergence rates: Kernel interpolation on non-Lipschitz domains. CoRR abs/2203.12532 (2022) - [i21]Bernard Haasdonk, Hendrik Kleikamp, Mario Ohlberger, Felix Schindler, Tizian Wenzel:
A new certified hierarchical and adaptive RB-ML-ROM surrogate model for parametrized PDEs. CoRR abs/2204.13454 (2022) - [i20]Tizian Wenzel, Daniel Winkle, Gabriele Santin, Bernard Haasdonk:
Adaptive meshfree solution of linear partial differential equations with PDE-greedy kernel methods. CoRR abs/2207.13971 (2022) - 2021
- [j24]Tizian Wenzel, Gabriele Santin, Bernard Haasdonk:
A novel class of stabilized greedy kernel approximation algorithms: Convergence, stability and uniform point distribution. J. Approx. Theory 262: 105508 (2021) - [c17]Pavel Gavrilenko, Bernard Haasdonk, Oleg Iliev, Mario Ohlberger, Felix Schindler, Pavel Toktaliev, Tizian Wenzel, Maha Youssef:
A Full Order, Reduced Order and Machine Learning Model Pipeline for Efficient Prediction of Reactive Flows. LSSC 2021: 378-386 - [c16]Shahnewaz Shuva, Patrick Buchfink, Oliver Röhrle, Bernard Haasdonk:
Reduced Basis Methods for Efficient Simulation of a Rigid Robot Hand Interacting with Soft Tissue. LSSC 2021: 402-409 - [c15]Tizian Wenzel, Marius Kurz, Andrea Beck, Gabriele Santin, Bernard Haasdonk:
Structured Deep Kernel Networks for Data-Driven Closure Terms of Turbulent Flows. LSSC 2021: 410-418 - [i19]Tizian Wenzel, Marius Kurz, Andrea Beck, Gabriele Santin, Bernard Haasdonk:
Structured Deep Kernel Networks for Data-Driven Closure Terms of Turbulent Flows. CoRR abs/2103.13655 (2021) - [i18]Shahnewaz Shuva, Patrick Buchfink, Oliver Röhrle, Bernard Haasdonk:
Reduced Basis Methods for Efficient Simulation of a Rigid Robot Hand Interacting with Soft Tissue. CoRR abs/2103.15422 (2021) - [i17]Pavel Gavrilenko, Bernard Haasdonk, Oleg Iliev, Mario Ohlberger, Felix Schindler, Pavel Toktaliev, Tizian Wenzel, Maha Youssef:
A full order, reduced order and machine learning model pipeline for efficient prediction of reactive flows. CoRR abs/2104.02800 (2021) - [i16]Tizian Wenzel, Gabriele Santin, Bernard Haasdonk:
Universality and Optimality of Structured Deep Kernel Networks. CoRR abs/2105.07228 (2021) - [i15]Tizian Wenzel, Gabriele Santin, Bernard Haasdonk:
Analysis of target data-dependent greedy kernel algorithms: Convergence rates for f-, $f \cdot P$- and f/P-greedy. CoRR abs/2105.07411 (2021) - [i14]Bernard Haasdonk, Mario Ohlberger, Felix Schindler:
An adaptive model hierarchy for data-augmented training of kernel models for reactive flow. CoRR abs/2110.12388 (2021) - [i13]Raphael Leiteritz, Patrick Buchfink, Bernard Haasdonk, Dirk Pflüger:
Surrogate-data-enriched Physics-Aware Neural Networks. CoRR abs/2112.05489 (2021) - [i12]Patrick Buchfink, Silke Glas, Bernard Haasdonk:
Symplectic Model Reduction of Hamiltonian Systems on Nonlinear Manifolds. CoRR abs/2112.10815 (2021) - 2020
- [j23]Alessandro Alla, Bernard Haasdonk, Andreas Schmidt:
Feedback control of parametrized PDEs via model order reduction and dynamic programming principle. Adv. Comput. Math. 46(1): 9 (2020) - [j22]Andreas Schmidt, Dominik Wittwar, Bernard Haasdonk:
Rigorous and effective a-posteriori error bounds for nonlinear problems - application to RB methods. Adv. Comput. Math. 46(2): 32 (2020) - [i11]Gabriele Santin, Toni Karvonen, Bernard Haasdonk:
Sampling based approximation of linear functionals in Reproducing Kernel Hilbert Spaces. CoRR abs/2004.00556 (2020) - [i10]Bernard Haasdonk, Tizian Wenzel, Gabriele Santin, Syn Schmitt:
Biomechanical surrogate modelling using stabilized vectorial greedy kernel methods. CoRR abs/2004.12670 (2020) - [i9]Bernard Haasdonk, Boumediene Hamzi, Gabriele Santin, Dominik Wittwar:
Kernel methods for center manifold approximation and a data-based version of the Center Manifold Theorem. CoRR abs/2012.00338 (2020)
2010 – 2019
- 2019
- [j21]Kevin Carlberg, Lukas Brencher, Bernard Haasdonk, Andrea Barth:
Data-Driven Time Parallelism via Forecasting. SIAM J. Sci. Comput. 41(3): B466-B496 (2019) - [c14]Patrick Buchfink, Bernard Haasdonk:
Experimental Comparison of Symplectic and Non-symplectic Model Order Reduction on an Uncertainty Quantification Problem. ENUMATH 2019: 205-213 - [c13]Bernard Haasdonk, Tizian Wenzel, Gabriele Santin, Syn Schmitt:
Biomechanical Surrogate Modelling Using Stabilized Vectorial Greedy Kernel Methods. ENUMATH 2019: 499-508 - [c12]Dominik Wittwar, Bernard Haasdonk:
Convergence Rates for Matrix P-Greedy Variants. ENUMATH 2019: 1195-1203 - [i8]Gabriele Santin, Bernard Haasdonk:
Kernel Methods for Surrogate Modeling. CoRR abs/1907.10556 (2019) - [i7]Roman Föll, Bernard Haasdonk, Markus Hanselmann, Holger Ulmer:
Deep recurrent Gaussian process with variational Sparse Spectrum approximation. CoRR abs/1909.13743 (2019) - [i6]Tizian Wenzel, Gabriele Santin, Bernard Haasdonk:
A novel class of stabilized greedy kernel approximation algorithms: Convergence, stability & uniform point distribution. CoRR abs/1911.04352 (2019) - 2018
- [j20]Immanuel Martini, Bernard Haasdonk, Gianluigi Rozza:
Certified Reduced Basis Approximation for the Coupling of Viscous and Inviscid Parametrized Flow Models. J. Sci. Comput. 74(1): 197-219 (2018) - [j19]Christoph Dibak, Bernard Haasdonk, Andreas Schmidt, Frank Dürr, Kurt Rothermel:
Enabling interactive mobile simulations through distributed reduced models. Pervasive Mob. Comput. 45: 19-34 (2018) - [i5]Markus Köppel, Fabian Franzelin, Ilja Kröker, Sergey Oladyshkin, Gabriele Santin, Dominik Wittwar, Andrea Barth, Bernard Haasdonk, Wolfgang Nowak, Dirk Pflüger, Christian Rohde:
Comparison of data-driven uncertainty quantification methods for a carbon dioxide storage benchmark scenario. CoRR abs/1802.03064 (2018) - [i4]Tobias Köppl, Gabriele Santin, Bernard Haasdonk, Rainer Helmig:
Numerical modelling of a peripheral arterial stenosis using dimensionally reduced models and machine learning techniques. CoRR abs/1802.04628 (2018) - [i3]Christoph Dibak, Bernard Haasdonk, Andreas Schmidt, Frank Dürr, Kurt Rothermel:
Enabling Interactive Mobile Simulations Through Distributed Reduced Models. CoRR abs/1802.05206 (2018) - 2017
- [c11]Christoph Dibak, Andreas Schmidt, Frank Dürr, Bernard Haasdonk, Kurt Rothermel:
Server-assisted interactive mobile simulations for pervasive applications. PerCom 2017: 111-120 - 2016
- [j18]David Amsallem, Bernard Haasdonk:
PEBL-ROM: Projection-error based local reduced-order models. Adv. Model. Simul. Eng. Sci. 3(1): 6:1-6:25 (2016) - [i2]Felix Fritzen, Bernard Haasdonk, David Ryckelynck, Sebastian Schöps:
An algorithmic comparison of the Hyper-Reduction and the Discrete Empirical Interpolation Method for a nonlinear thermal problem. CoRR abs/1610.05029 (2016) - [i1]Kevin Carlberg, Lukas Brencher, Bernard Haasdonk, Andrea Barth:
Data-driven time parallelism via forecasting. CoRR abs/1610.09049 (2016) - 2015
- [j17]Magnus Redeker, Bernard Haasdonk:
A POD-EIM reduced two-scale model for crystal growth. Adv. Comput. Math. 41(5): 987-1013 (2015) - [j16]Immanuel Martini, Gianluigi Rozza, Bernard Haasdonk:
Reduced basis approximation and a-posteriori error estimation for the coupled Stokes-Darcy system. Adv. Comput. Math. 41(5): 1131-1157 (2015) - [j15]Markus A. Dihlmann, Bernard Haasdonk:
Certified PDE-constrained parameter optimization using reduced basis surrogate models for evolution problems. Comput. Optim. Appl. 60(3): 753-787 (2015) - [j14]Olena Burkovska, Bernard Haasdonk, Julien Salomon, Barbara I. Wohlmuth:
Reduced Basis Methods for Pricing Options with the Black-Scholes and Heston Models. SIAM J. Financial Math. 6(1): 685-712 (2015) - 2014
- [j13]Daniel Wirtz, Danny C. Sorensen, Bernard Haasdonk:
A Posteriori Error Estimation for DEIM Reduced Nonlinear Dynamical Systems. SIAM J. Sci. Comput. 36(2) (2014) - 2013
- [j12]Bernard Haasdonk, Karsten Urban, Bernhard Wieland:
Reduced Basis Methods for Parameterized Partial Differential Equations with Stochastic Influences Using the Karhunen-Loève Expansion. SIAM/ASA J. Uncertain. Quantification 1(1): 79-105 (2013) - [c10]Immanuel Martini, Bernard Haasdonk:
Output Error Bounds for the Dirichlet-Neumann Reduced Basis Method. ENUMATH 2013: 437-445 - 2012
- [j11]Steffen Waldherr, Bernard Haasdonk:
Efficient parametric analysis of the chemical master equation through model order reduction. BMC Syst. Biol. 6: 81 (2012) - [j10]Daniel Wirtz, Bernard Haasdonk:
Efficient a-posteriori error estimation for nonlinear kernel-based reduced systems. Syst. Control. Lett. 61(1): 203-211 (2012) - [j9]Bernard Haasdonk, Julien Salomon, Barbara I. Wohlmuth:
A Reduced Basis Method for Parametrized Variational Inequalities. SIAM J. Numer. Anal. 50(5): 2656-2676 (2012) - [j8]Martin Drohmann, Bernard Haasdonk, Mario Ohlberger:
Reduced Basis Approximation for Nonlinear Parametrized Evolution Equations based on Empirical Operator Interpolation. SIAM J. Sci. Comput. 34(2) (2012) - 2010
- [j7]Bernard Haasdonk:
Effiziente und gesicherte Modellreduktion für parametrisierte dynamische Systeme (Efficient and Certified Model Reduction for Parametrized Dynamical Systems). Autom. 58(8): 468-474 (2010) - [c9]Bernard Haasdonk, Elzbieta Pekalska:
Indefinite Kernel Discriminant Analysis. COMPSTAT 2010: 221-230
2000 – 2009
- 2009
- [j6]Nadine Jung, Bernard Haasdonk, Dietmar Kröner:
Reduced Basis Method for quadratically nonlinear transport equations. Int. J. Comput. Sci. Math. 2(4): 334-353 (2009) - [j5]Elzbieta Pekalska, Bernard Haasdonk:
Kernel Discriminant Analysis for Positive Definite and Indefinite Kernels. IEEE Trans. Pattern Anal. Mach. Intell. 31(6): 1017-1032 (2009) - 2008
- [c8]Bernard Haasdonk, Elzbieta Pekalska:
Classification with Kernel Mahalanobis Distance Classifiers. GfKl 2008: 351-361 - [c7]Bernard Haasdonk, Elzbieta Pekalska:
Indefinite Kernel Fisher Discriminant. ICPR 2008: 1-4 - 2007
- [j4]Bernard Haasdonk, Hans Burkhardt:
Invariant kernel functions for pattern analysis and machine learning. Mach. Learn. 68(1): 35-61 (2007) - [c6]Bernard Haasdonk, Hans Burkhardt:
Classification with Invariant Distance Substitution Kernels. GfKl 2007: 37-44 - 2006
- [b1]Bernard Haasdonk:
Transformation knowledge in pattern analysis with kernel methods: distance and integration kernels. University of Freiburg, Freiburg im Breisgau, Germany, Shaker 2006, ISBN 978-3-8322-5026-3, pp. 1-151 - 2005
- [j3]Bernard Haasdonk:
Feature Space Interpretation of SVMs with Indefinite Kernels. IEEE Trans. Pattern Anal. Mach. Intell. 27(4): 482-492 (2005) - [c5]Bernard Haasdonk, A. Vossen, Hans Burkhardt:
Invariance in Kernel Methods by Haar-Integration Kernels. SCIA 2005: 841-851 - 2004
- [c4]Bernard Haasdonk, Claus Bahlmann:
Learning with Distance Substitution Kernels. DAGM-Symposium 2004: 220-227 - [c3]Bernard Haasdonk, Alaa Halawani, Hans Burkhardt:
Adjustable Invariant Features by Partial Haar-Integration. ICPR (2) 2004: 769-774 - 2003
- [j2]Bernard Haasdonk, Mario Ohlberger, Martin Rumpf, Alfred Schmidt, Kunibert G. Siebert:
Multiresolution Visualization of Higher Order Adaptive Finite Element Simulations. Computing 70(3): 181-204 (2003) - 2002
- [c2]Claus Bahlmann, Bernard Haasdonk, Hans Burkhardt:
Online handwriting recognition with support vector machines - a kernel approach. IWFHR 2002: 49-54 - [c1]Bernard Haasdonk, Daniel Keysers:
Tangent Distance Kernels for Support Vector Machines. ICPR (2) 2002: 864-868 - 2001
- [j1]Bernard Haasdonk, Dietmar Kröner, Christian Rohde:
Convergence of a staggered Lax-Friedrichs scheme for nonlinear conservation laws on unstructured two-dimensional grids. Numerische Mathematik 88(3): 459-484 (2001)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-07 20:32 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint