default search action
Xia Ben Hu
Xia (Ben) Hu – Xia Hu 0001
Person information
- affiliation: Rice University, Department of Computer Science, Houston, TX, USA
- affiliation (former): Texas A&M University, Department of Computer Science and Engineering, College Station, TX, USA
- affiliation (PhD): Arizona State University, Department of Computer Science, Tempe, AZ, USA
- affiliation (former): Beihang University, Beijing, China
Other persons with the same name
- Xia Hu — disambiguation page
SPARQL queries
🛈 Please note that only 67% of the records listed on this page have a DOI. Therefore, DOI-based queries can only provide partial results.
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j56]Mengnan Du, Fengxiang He, Na Zou, Dacheng Tao, Xia Hu:
Shortcut Learning of Large Language Models in Natural Language Understanding. Commun. ACM 67(1): 110-120 (2024) - [j55]Ruixiang Tang, Yu-Neng Chuang, Xia Hu:
The Science of Detecting LLM-Generated Text. Commun. ACM 67(4): 50-59 (2024) - [j54]Zirui Liu, Qingquan Song, Li Li, Soo-Hyun Choi, Rui Chen, Xia Hu:
PME: pruning-based multi-size embedding for recommender systems. Frontiers Big Data 6 (2024) - [j53]Aokun Chen, Yunpeng Zhao, Yi Zheng, Hui Hu, Xia Hu, Jennifer N. Fishe, William R. Hogan, Elizabeth A. Shenkman, Yi Guo, Jiang Bian:
Exploring the Relation between Contextual Social Determinants of Health and COVID-19 Occurrence and Hospitalization. Informatics 11: 4 (2024) - [j52]Yu-Neng Chuang, Ruixiang Tang, Xiaoqian Jiang, Xia Hu:
SPeC: A Soft Prompt-Based Calibration on Performance Variability of Large Language Model in Clinical Notes Summarization. J. Biomed. Informatics 151: 104606 (2024) - [j51]Sirui Ding, Shenghan Zhang, Xia Hu, Na Zou:
Identify and mitigate bias in electronic phenotyping: A comprehensive study from computational perspective. J. Biomed. Informatics 156: 104671 (2024) - [j50]Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian Han, Qizhang Feng, Haoming Jiang, Shaochen Zhong, Bing Yin, Xia Ben Hu:
Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond. ACM Trans. Knowl. Discov. Data 18(6): 160:1-160:32 (2024) - [j49]Qiaoyu Tan, Xin Zhang, Xiao Huang, Hao Chen, Jundong Li, Xia Hu:
Collaborative Graph Neural Networks for Attributed Network Embedding. IEEE Trans. Knowl. Data Eng. 36(3): 972-986 (2024) - [j48]Tianming Liu, Dajiang Zhu, Fei Wang, Islem Rekik, Xia Ben Hu, Dinggang Shen:
Editorial Special Issue on Explainable and Generalizable Deep Learning for Medical Imaging. IEEE Trans. Neural Networks Learn. Syst. 35(6): 7271-7274 (2024) - [c191]Zhimeng Jiang, Xiaotian Han, Chao Fan, Zirui Liu, Na Zou, Ali Mostafavi, Xia Hu:
Chasing Fairness in Graphs: A GNN Architecture Perspective. AAAI 2024: 21214-21222 - [c190]Jiayi Yuan, Hongyi Liu, Shaochen Zhong, Yu-Neng Chuang, Songchen Li, Guanchu Wang, Duy Le, Hongye Jin, Vipin Chaudhary, Zhaozhuo Xu, Zirui Liu, Xia Ben Hu:
KV Cache Compression, But What Must We Give in Return? A Comprehensive Benchmark of Long Context Capable Approaches. EMNLP (Findings) 2024: 4623-4648 - [c189]Guanchu Wang, Yu-Neng Chuang, Ruixiang Tang, Shaochen Zhong, Jiayi Yuan, Hongye Jin, Zirui Liu, Vipin Chaudhary, Shuai Xu, James Caverlee, Xia Ben Hu:
Taylor Unswift: Secured Weight Release for Large Language Models via Taylor Expansion. EMNLP 2024: 6928-6941 - [c188]Yuting Sun, Guansong Pang, Guanhua Ye, Tong Chen, Xia Hu, Hongzhi Yin:
Unraveling the 'Anomaly' in Time Series Anomaly Detection: A Self-supervised Tri-domain Solution. ICDE 2024: 981-994 - [c187]Xiaotian Han, Jianfeng Chi, Yu Chen, Qifan Wang, Han Zhao, Na Zou, Xia Hu:
FFB: A Fair Fairness Benchmark for In-Processing Group Fairness Methods. ICLR 2024 - [c186]Hongye Jin, Xiaotian Han, Jingfeng Yang, Zhimeng Jiang, Zirui Liu, Chia-Yuan Chang, Huiyuan Chen, Xia Hu:
LLM Maybe LongLM: SelfExtend LLM Context Window Without Tuning. ICML 2024 - [c185]Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi Chen, Xia Hu:
KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache. ICML 2024 - [c184]Guanchu Wang, Yu-Neng Chuang, Fan Yang, Mengnan Du, Chia-Yuan Chang, Shaochen Zhong, Zirui Liu, Zhaozhuo Xu, Kaixiong Zhou, Xuanting Cai, Xia Hu:
TVE: Learning Meta-attribution for Transferable Vision Explainer. ICML 2024 - [c183]Zhaozhuo Xu, Zirui Liu, Beidi Chen, Shaochen Zhong, Yuxin Tang, Jue Wang, Kaixiong Zhou, Xia Hu, Anshumali Shrivastava:
Soft Prompt Recovers Compressed LLMs, Transferably. ICML 2024 - [c182]Shaochen Zhong, Duy Le, Zirui Liu, Zhimeng Jiang, Andrew Ye, Jiamu Zhang, Jiayi Yuan, Kaixiong Zhou, Zhaozhuo Xu, Jing Ma, Shuai Xu, Vipin Chaudhary, Xia Hu:
GNNs Also Deserve Editing, and They Need It More Than Once. ICML 2024 - [c181]Ruixiang Tang, Yu-Neng Chuang, Xuanting Cai, Mengnan Du, Xia Hu:
Secure Your Model: An Effective Key Prompt Protection Mechanism for Large Language Models. NAACL-HLT (Findings) 2024: 4061-4073 - [c180]Yu-Neng Chuang, Tianwei Xing, Chia-Yuan Chang, Zirui Liu, Xun Chen, Xia Ben Hu:
Learning to Compress Prompt in Natural Language Formats. NAACL-HLT 2024: 7756-7767 - [c179]Huiyuan Chen, Vivian Lai, Hongye Jin, Zhimeng Jiang, Mahashweta Das, Xia Hu:
Towards Mitigating Dimensional Collapse of Representations in Collaborative Filtering. WSDM 2024: 106-115 - [i153]Hongye Jin, Xiaotian Han, Jingfeng Yang, Zhimeng Jiang, Zirui Liu, Chia-Yuan Chang, Huiyuan Chen, Xia Hu:
LLM Maybe LongLM: Self-Extend LLM Context Window Without Tuning. CoRR abs/2401.01325 (2024) - [i152]Zirui Liu, Qingquan Song, Qiang Charles Xiao, Sathiya Keerthi Selvaraj, Rahul Mazumder, Aman Gupta, Xia Hu:
FFSplit: Split Feed-Forward Network For Optimizing Accuracy-Efficiency Trade-off in Language Model Inference. CoRR abs/2401.04044 (2024) - [i151]Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi Chen, Xia Hu:
KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache. CoRR abs/2402.02750 (2024) - [i150]Yu-Neng Chuang, Guanchu Wang, Chia-Yuan Chang, Ruixiang Tang, Fan Yang, Mengnan Du, Xuanting Cai, Xia Hu:
Large Language Models As Faithful Explainers. CoRR abs/2402.04678 (2024) - [i149]Aokun Chen, Qian Li, Yu Huang, Yongqiu Li, Yu-Neng Chuang, Xia Hu, Serena Guo, Yonghui Wu, Yi Guo, Jiang Bian:
Feasibility of Identifying Factors Related to Alzheimer's Disease and Related Dementia in Real-World Data. CoRR abs/2402.15515 (2024) - [i148]Yu-Neng Chuang, Tianwei Xing, Chia-Yuan Chang, Zirui Liu, Xun Chen, Xia Hu:
Learning to Compress Prompt in Natural Language Formats. CoRR abs/2402.18700 (2024) - [i147]Hongyi Liu, Zirui Liu, Ruixiang Tang, Jiayi Yuan, Shaochen Zhong, Yu-Neng Chuang, Li Li, Rui Chen, Xia Hu:
LoRA-as-an-Attack! Piercing LLM Safety Under The Share-and-Play Scenario. CoRR abs/2403.00108 (2024) - [i146]Yu-Neng Chuang, Songchen Li, Jiayi Yuan, Guanchu Wang, Kwei-Herng Lai, Leisheng Yu, Sirui Ding, Chia-Yuan Chang, Qiaoyu Tan, Daochen Zha, Xia Hu:
Understanding Different Design Choices in Training Large Time Series Models. CoRR abs/2406.14045 (2024) - [i145]Jiayi Yuan, Hongyi Liu, Shaochen Zhong, Yu-Neng Chuang, Songchen Li, Guanchu Wang, Duy Le, Hongye Jin, Vipin Chaudhary, Zhaozhuo Xu, Zirui Liu, Xia Hu:
KV Cache Compression, But What Must We Give in Return? A Comprehensive Benchmark of Long Context Capable Approaches. CoRR abs/2407.01527 (2024) - [i144]Guanchu Wang, Junhao Ran, Ruixiang Tang, Chia-Yuan Chang, Yu-Neng Chuang, Zirui Liu, Vladimir Braverman, Zhandong Liu, Xia Hu:
Assessing and Enhancing Large Language Models in Rare Disease Question-answering. CoRR abs/2408.08422 (2024) - [i143]Guanchu Wang, Yu-Neng Chuang, Ruixiang Tang, Shaochen Zhong, Jiayi Yuan, Hongye Jin, Zirui Liu, Vipin Chaudhary, Shuai Xu, James Caverlee, Xia Hu:
Taylor Unswift: Secured Weight Release for Large Language Models via Taylor Expansion. CoRR abs/2410.05331 (2024) - [i142]Zhimeng Jiang, Zirui Liu, Xiaotian Han, Qizhang Feng, Hongye Jin, Qiaoyu Tan, Kaixiong Zhou, Na Zou, Xia Ben Hu:
Gradient Rewiring for Editable Graph Neural Network Training. CoRR abs/2410.15556 (2024) - 2023
- [j47]Zhaoyi Chen, Yuchen Yang, Dazheng Zhang, Jingchuan Guo, Yi Guo, Xia Hu, Yong Chen, Jiang Bian:
Predicting the Risk of Alzheimer's Disease and Related Dementia in Patients with Mild Cognitive Impairment Using a Semi-Competing Risk Approach. Informatics 10(2): 46 (2023) - [j46]Can Li, Sirui Ding, Na Zou, Xia Hu, Xiaoqian Jiang, Kai Zhang:
Multi-task learning with dynamic re-weighting to achieve fairness in healthcare predictive modeling. J. Biomed. Informatics 143: 104399 (2023) - [j45]Tianlong Chen, Kaixiong Zhou, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, Zhangyang Wang:
Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study. IEEE Trans. Pattern Anal. Mach. Intell. 45(3): 2769-2781 (2023) - [j44]Ruixiang Tang, Qizhang Feng, Ninghao Liu, Fan Yang, Xia Hu:
Did You Train on My Dataset? Towards Public Dataset Protection with CleanLabel Backdoor Watermarking. SIGKDD Explor. 25(1): 43-53 (2023) - [j43]Zhimeng Jiang, Kaixiong Zhou, Mi Zhang, Rui Chen, Xia Hu, Soo-Hyun Choi:
Adaptive RiskAware Bidding with Budget Constraint in Display Advertising. SIGKDD Explor. 25(1): 73-82 (2023) - [j42]Xiaotian Han, Zhimeng Jiang, Hongye Jin, Zirui Liu, Na Zou, Qifan Wang, Xia Hu:
Retiring ΔDP: New Distribution-Level Metrics for Demographic Parity. Trans. Mach. Learn. Res. 2023 (2023) - [j41]Zirui Liu, Kaixiong Zhou, Zhimeng Jiang, Li Li, Rui Chen, Soo-Hyun Choi, Xia Hu:
DSpar: An Embarrassingly Simple Strategy for Efficient GNN training and inference via Degree-based Sparsification. Trans. Mach. Learn. Res. 2023 (2023) - [c178]Qizhang Feng, Jiayi Yuan, Forhan Bin Emdad, Karim Hanna, Xia Hu, Zhe He:
Can Attention Be Used to Explain EHR-Based Mortality Prediction Tasks: A Case Study on Hemorrhagic Stroke. BCB 2023: 26:1-26:6 - [c177]Kwei-Herng Lai, Daochen Zha, Huiyuan Chen, Mangesh Bendre, Yuzhong Chen, Mahashweta Das, Hao Yang, Xia Hu:
Tackling Diverse Minorities in Imbalanced Classification. CIKM 2023: 1178-1187 - [c176]Ruixiang Tang, Hongye Jin, Mengnan Du, Curtis Wigington, Rajiv Jain, Xia Hu:
Exposing Model Theft: A Robust and Transferable Watermark for Thwarting Model Extraction Attacks. CIKM 2023: 4315-4319 - [c175]Yu-Neng Chuang, Guanchu Wang, Chia-Yuan Chang, Kwei-Herng Lai, Daochen Zha, Ruixiang Tang, Fan Yang, Alfredo Costilla-Reyes, Kaixiong Zhou, Xiaoqian Jiang, Xia Hu:
DiscoverPath: A Knowledge Refinement and Retrieval System for Interdisciplinarity on Biomedical Research. CIKM 2023: 5021-5025 - [c174]Mengnan Du, Subhabrata Mukherjee, Yu Cheng, Milad Shokouhi, Xia Hu, Ahmed Hassan Awadallah:
Robustness Challenges in Model Distillation and Pruning for Natural Language Understanding. EACL 2023: 1758-1770 - [c173]Ruixiang Tang, Gord Lueck, Rodolfo Quispe, Huseyin A. Inan, Janardhan Kulkarni, Xia Hu:
Assessing Privacy Risks in Language Models: A Case Study on Summarization Tasks. EMNLP (Findings) 2023: 15406-15418 - [c172]Yezi Liu, Qinggang Zhang, Mengnan Du, Xiao Huang, Xia Hu:
Error Detection on Knowledge Graphs with Triple Embedding. EUSIPCO 2023: 1604-1608 - [c171]Andrew T. Lian, Alfredo Costilla-Reyes, Xia Hu:
CAPTAIN: An AI-Based Chatbot for Cyberbullying Prevention and Intervention. HCI (41) 2023: 98-107 - [c170]Qiaoyu Tan, Daochen Zha, Ninghao Liu, Soo-Hyun Choi, Li Li, Rui Chen, Xia Hu:
Double Wins: Boosting Accuracy and Efficiency of Graph Neural Networks by Reliable Knowledge Distillation. ICDM 2023: 1343-1348 - [c169]Shenghan Zhang, Haoxuan Li, Ruixiang Tang, Sirui Ding, Laila Rasmy, Degui Zhi, Na Zou, Xia Hu:
PheME: A deep ensemble framework for improving phenotype prediction from multi-modal data. ICHI 2023: 268-275 - [c168]Yu-Neng Chuang, Guanchu Wang, Fan Yang, Quan Zhou, Pushkar Tripathi, Xuanting Cai, Xia Ben Hu:
CoRTX: Contrastive Framework for Real-time Explanation. ICLR 2023 - [c167]Xiaotian Han, Tong Zhao, Yozen Liu, Xia Hu, Neil Shah:
MLPInit: Embarrassingly Simple GNN Training Acceleration with MLP Initialization. ICLR 2023 - [c166]Zirui Liu, Shengyuan Chen, Kaixiong Zhou, Daochen Zha, Xiao Huang, Xia Hu:
RSC: Accelerate Graph Neural Networks Training via Randomized Sparse Computations. ICML 2023: 21951-21968 - [c165]Guanchu Wang, Zirui Liu, Zhimeng Jiang, Ninghao Liu, Na Zou, Xia Ben Hu:
DIVISION: Memory Efficient Training via Dual Activation Precision. ICML 2023: 36036-36057 - [c164]Huiyuan Chen, Kaixiong Zhou, Zhimeng Jiang, Chin-Chia Michael Yeh, Xiaoting Li, Menghai Pan, Yan Zheng, Xia Hu, Hao Yang:
Probabilistic Masked Attention Networks for Explainable Sequential Recommendation. IJCAI 2023: 2068-2076 - [c163]Yue Xu, Hao Chen, Zefan Wang, Jianwen Yin, Qijie Shen, Dimin Wang, Feiran Huang, Lixiang Lai, Tao Zhuang, Junfeng Ge, Xia Hu:
Multi-factor Sequential Re-ranking with Perception-Aware Diversification. KDD 2023: 5327-5337 - [c162]Daochen Zha, Kwei-Herng Lai, Fan Yang, Na Zou, Huiji Gao, Xia Hu:
Data-centric AI: Techniques and Future Perspectives. KDD 2023: 5839-5840 - [c161]Daochen Zha, Louis Feng, Liang Luo, Bhargav Bhushanam, Zirui Liu, Yusuo Hu, Jade Nie, Yuzhen Huang, Yuandong Tian, Arun Kejariwal, Xia Hu:
Pre-train and Search: Efficient Embedding Table Sharding with Pre-trained Neural Cost Models. MLSys 2023 - [c160]Qizhang Feng, Zhimeng Stephen Jiang, Ruiquan Li, Yicheng Wang, Na Zou, Jiang Bian, Xia Hu:
Fair Graph Distillation. NeurIPS 2023 - [c159]Zhimeng Stephen Jiang, Xiaotian Han, Hongye Jin, Guanchu Wang, Rui Chen, Na Zou, Xia Hu:
Chasing Fairness Under Distribution Shift: A Model Weight Perturbation Approach. NeurIPS 2023 - [c158]Zirui Liu, Guanchu Wang, Shaochen (Henry) Zhong, Zhaozhuo Xu, Daochen Zha, Ruixiang (Ryan) Tang, Zhimeng Stephen Jiang, Kaixiong Zhou, Vipin Chaudhary, Shuai Xu, Xia Hu:
Winner-Take-All Column Row Sampling for Memory Efficient Adaptation of Language Model. NeurIPS 2023 - [c157]Ruixiang (Ryan) Tang, Jiayi Yuan, Yiming Li, Zirui Liu, Rui Chen, Xia Hu:
Setting the Trap: Capturing and Defeating Backdoors in Pretrained Language Models through Honeypots. NeurIPS 2023 - [c156]Shaochen (Henry) Zhong, Zaichuan You, Jiamu Zhang, Sebastian Zhao, Zachary LeClaire, Zirui Liu, Daochen Zha, Vipin Chaudhary, Shuai Xu, Xia Hu:
One Less Reason for Filter Pruning: Gaining Free Adversarial Robustness with Structured Grouped Kernel Pruning. NeurIPS 2023 - [c155]Ruixiang Tang, Mengnan Du, Xia Hu:
Deep Serial Number: Computational Watermark for DNN Intellectual Property Protection. ECML/PKDD (6) 2023: 157-173 - [c154]Guanchu Wang, Mengnan Du, Ninghao Liu, Na Zou, Xia Ben Hu:
Mitigating Algorithmic Bias with Limited Annotations. ECML/PKDD (2) 2023: 241-258 - [c153]Huiyuan Chen, Kaixiong Zhou, Kwei-Herng Lai, Chin-Chia Michael Yeh, Yan Zheng, Xia Hu, Hao Yang:
Hessian-aware Quantized Node Embeddings for Recommendation. RecSys 2023: 757-762 - [c152]Kaixiong Zhou, Soo-Hyun Choi, Zirui Liu, Ninghao Liu, Fan Yang, Rui Chen, Li Li, Xia Hu:
Adaptive Label Smoothing To Regularize Large-Scale Graph Training. SDM 2023: 55-63 - [c151]Kwei-Herng Lai, Lan Wang, Huiyuan Chen, Kaixiong Zhou, Fei Wang, Hao Yang, Xia Hu:
Context-aware Domain Adaptation for Time Series Anomaly Detection. SDM 2023: 676-684 - [c150]Daochen Zha, Zaid Pervaiz Bhat, Kwei-Herng Lai, Fan Yang, Xia Hu:
Data-centric AI: Perspectives and Challenges. SDM 2023: 945-948 - [c149]Qiaoyu Tan, Xin Zhang, Ninghao Liu, Daochen Zha, Li Li, Rui Chen, Soo-Hyun Choi, Xia Hu:
Bring Your Own View: Graph Neural Networks for Link Prediction with Personalized Subgraph Selection. WSDM 2023: 625-633 - [c148]Qiaoyu Tan, Ninghao Liu, Xiao Huang, Soo-Hyun Choi, Li Li, Rui Chen, Xia Hu:
S2GAE: Self-Supervised Graph Autoencoders are Generalizable Learners with Graph Masking. WSDM 2023: 787-795 - [i141]Daochen Zha, Zaid Pervaiz Bhat, Kwei-Herng Lai, Fan Yang, Xia Hu:
Data-centric AI: Perspectives and Challenges. CoRR abs/2301.04819 (2023) - [i140]Xiaotian Han, Zhimeng Jiang, Hongye Jin, Zirui Liu, Na Zou, Qifan Wang, Xia Hu:
Retiring $Δ$DP: New Distribution-Level Metrics for Demographic Parity. CoRR abs/2301.13443 (2023) - [i139]Yu-Neng Chuang, Guanchu Wang, Fan Yang, Zirui Liu, Xuanting Cai, Mengnan Du, Xia Ben Hu:
Efficient XAI Techniques: A Taxonomic Survey. CoRR abs/2302.03225 (2023) - [i138]Sirui Ding, Ruixiang Tang, Daochen Zha, Na Zou, Kai Zhang, Xiaoqian Jiang, Xia Hu:
Fairly Predicting Graft Failure in Liver Transplant for Organ Assigning. CoRR abs/2302.09400 (2023) - [i137]Diego Martinez, Daochen Zha, Qiaoyu Tan, Xia Hu:
Towards Personalized Preprocessing Pipeline Search. CoRR abs/2302.14329 (2023) - [i136]Yu-Neng Chuang, Guanchu Wang, Fan Yang, Quan Zhou, Pushkar Tripathi, Xuanting Cai, Xia Ben Hu:
CoRTX: Contrastive Framework for Real-time Explanation. CoRR abs/2303.02794 (2023) - [i135]Zhimeng Jiang, Xiaotian Han, Hongye Jin, Guanchu Wang, Na Zou, Xia Ben Hu:
Weight Perturbation Can Help Fairness under Distribution Shift. CoRR abs/2303.03300 (2023) - [i134]Ruixiang Tang, Xiaotian Han, Xiaoqian Jiang, Xia Hu:
Does Synthetic Data Generation of LLMs Help Clinical Text Mining? CoRR abs/2303.04360 (2023) - [i133]Ruixiang Tang, Yu-Neng Chuang, Xia Hu:
The Science of Detecting LLM-Generated Texts. CoRR abs/2303.07205 (2023) - [i132]Daochen Zha, Zaid Pervaiz Bhat, Kwei-Herng Lai, Fan Yang, Zhimeng Jiang, Shaochen Zhong, Xia Hu:
Data-centric Artificial Intelligence: A Survey. CoRR abs/2303.10158 (2023) - [i131]Shenghan Zhang, Haoxuan Li, Ruixiang Tang, Sirui Ding, Laila Rasmy, Degui Zhi, Na Zou, Xia Hu:
PheME: A deep ensemble framework for improving phenotype prediction from multi-modal data. CoRR abs/2303.10794 (2023) - [i130]Ruixiang Tang, Qizhang Feng, Ninghao Liu, Fan Yang, Xia Hu:
Did You Train on My Dataset? Towards Public Dataset Protection with Clean-Label Backdoor Watermarking. CoRR abs/2303.11470 (2023) - [i129]Yu-Neng Chuang, Ruixiang Tang, Xiaoqian Jiang, Xia Hu:
SPeC: A Soft Prompt-Based Calibration on Mitigating Performance Variability in Clinical Notes Summarization. CoRR abs/2303.13035 (2023) - [i128]Chia-Yuan Chang, Jiayi Yuan, Sirui Ding, Qiaoyu Tan, Kai Zhang, Xiaoqian Jiang, Xia Hu, Na Zou:
Towards Fair Patient-Trial Matching via Patient-Criterion Level Fairness Constraint. CoRR abs/2303.13790 (2023) - [i127]Jiayi Yuan, Ruixiang Tang, Xiaoqian Jiang, Xia Hu:
LLM for Patient-Trial Matching: Privacy-Aware Data Augmentation Towards Better Performance and Generalizability. CoRR abs/2303.16756 (2023) - [i126]Sirui Ding, Qiaoyu Tan, Chia-Yuan Chang, Na Zou, Kai Zhang, Nathan R. Hoot, Xiaoqian Jiang, Xia Hu:
Multi-Task Learning for Post-transplant Cause of Death Analysis: A Case Study on Liver Transplant. CoRR abs/2304.00012 (2023) - [i125]Kwei-Herng Lai, Lan Wang, Huiyuan Chen, Kaixiong Zhou, Fei Wang, Hao Yang, Xia Hu:
Context-aware Domain Adaptation for Time Series Anomaly Detection. CoRR abs/2304.07453 (2023) - [i124]Guanchu Wang, Ninghao Liu, Daochen Zha, Xia Ben Hu:
Interactive System-wise Anomaly Detection. CoRR abs/2304.10704 (2023) - [i123]Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian Han, Qizhang Feng, Haoming Jiang, Bing Yin, Xia Hu:
Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond. CoRR abs/2304.13712 (2023) - [i122]Daochen Zha, Louis Feng, Liang Luo, Bhargav Bhushanam, Zirui Liu, Yusuo Hu, Jade Nie, Yuzhen Huang, Yuandong Tian, Arun Kejariwal, Xia Hu:
Pre-train and Search: Efficient Embedding Table Sharding with Pre-trained Neural Cost Models. CoRR abs/2305.01868 (2023) - [i121]Zhaozhuo Xu, Zirui Liu, Beidi Chen, Yuxin Tang, Jue Wang, Kaixiong Zhou, Xia Hu, Anshumali Shrivastava:
Compress, Then Prompt: Improving Accuracy-Efficiency Trade-off of LLM Inference with Transferable Prompt. CoRR abs/2305.11186 (2023) - [i120]Yue Xu, Hao Chen, Zefan Wang, Jianwen Yin, Qijie Shen, Dimin Wang, Feiran Huang, Lixiang Lai, Tao Zhuang, Junfeng Ge, Xia Hu:
Multi-factor Sequential Re-ranking with Perception-Aware Diversification. CoRR abs/2305.12420 (2023) - [i119]Qizhang Feng, Ninghao Liu, Fan Yang, Ruixiang Tang, Mengnan Du, Xia Hu:
DEGREE: Decomposition Based Explanation For Graph Neural Networks. CoRR abs/2305.12895 (2023) - [i118]Zirui Liu, Guanchu Wang, Shaochen Zhong, Zhaozhuo Xu, Daochen Zha, Ruixiang Tang, Zhimeng Jiang, Kaixiong Zhou, Vipin Chaudhary, Shuai Xu, Xia Ben Hu:
Winner-Take-All Column Row Sampling for Memory Efficient Adaptation of Language Model. CoRR abs/2305.15265 (2023) - [i117]Zirui Liu, Zhimeng Jiang, Shaochen Zhong, Kaixiong Zhou, Li Li, Rui Chen, Soo-Hyun Choi, Xia Hu:
Editable Graph Neural Network for Node Classifications. CoRR abs/2305.15529 (2023) - [i116]Yao Rong, Guanchu Wang, Qizhang Feng, Ninghao Liu, Zirui Liu, Enkelejda Kasneci, Xia Ben Hu:
Efficient GNN Explanation via Learning Removal-based Attribution. CoRR abs/2306.05760 (2023) - [i115]Xiaotian Han, Jianfeng Chi, Yu Chen, Qifan Wang, Han Zhao, Na Zou, Xia Hu:
FFB: A Fair Fairness Benchmark for In-Processing Group Fairness Methods. CoRR abs/2306.09468 (2023) - [i114]Chia-Yuan Chang, Yu-Neng Chuang, Kwei-Herng Lai, Xiaotian Han, Xia Hu, Na Zou:
Towards Assumption-free Bias Mitigation. CoRR abs/2307.04105 (2023) - [i113]Qiaoyu Tan, Xin Zhang, Xiao Huang, Hao Chen, Jundong Li, Xia Hu:
Collaborative Graph Neural Networks for Attributed Network Embedding. CoRR abs/2307.11981 (2023) - [i112]Qizhang Feng, Jiayi Yuan, Forhan Bin Emdad, Karim Hanna, Xia Hu, Zhe He:
Can Attention Be Used to Explain EHR-Based Mortality Prediction Tasks: A Case Study on Hemorrhagic Stroke. CoRR abs/2308.05110 (2023) - [i111]Kwei-Herng Lai, Daochen Zha, Huiyuan Chen, Mangesh Bendre, Yuzhong Chen, Mahashweta Das, Hao Yang, Xia Hu:
Tackling Diverse Minorities in Imbalanced Classification. CoRR abs/2308.14838 (2023) - [i110]Huiyuan Chen, Kaixiong Zhou, Kwei-Herng Lai, Chin-Chia Michael Yeh, Yan Zheng, Xia Hu, Hao Yang:
Hessian-aware Quantized Node Embeddings for Recommendation. CoRR abs/2309.01032 (2023) - [i109]Yu-Neng Chuang, Guanchu Wang, Chia-Yuan Chang, Kwei-Herng Lai, Daochen Zha, Ruixiang Tang, Fan Yang, Alfredo Costilla-Reyes, Kaixiong Zhou, Xiaoqian Jiang, Xia Ben Hu:
DiscoverPath: A Knowledge Refinement and Retrieval System for Interdisciplinarity on Biomedical Research. CoRR abs/2309.01808 (2023) - [i108]Xiaotian Han, Hanqing Zeng, Yu Chen, Shaoliang Nie, Jingzhou Liu, Kanika Narang, Zahra Shakeri, Karthik Abinav Sankararaman, Song Jiang, Madian Khabsa, Qifan Wang, Xia Hu:
On the Equivalence of Graph Convolution and Mixup. CoRR abs/2310.00183 (2023) - [i107]Hongye Jin, Xiaotian Han, Jingfeng Yang, Zhimeng Jiang, Chia-Yuan Chang, Xia Hu:
GrowLength: Accelerating LLMs Pretraining by Progressively Growing Training Length. CoRR abs/2310.00576 (2023) - [i106]Ruixiang Tang, Gord Lueck, Rodolfo Quispe, Huseyin A. Inan, Janardhan Kulkarni, Xia Hu:
Assessing Privacy Risks in Language Models: A Case Study on Summarization Tasks. CoRR abs/2310.13291 (2023) - [i105]Ruixiang Tang, Jiayi Yuan, Yiming Li, Zirui Liu, Rui Chen, Xia Hu:
Setting the Trap: Capturing and Defeating Backdoors in Pretrained Language Models through Honeypots. CoRR abs/2310.18633 (2023) - [i104]Yuting Sun, Guansong Pang, Guanhua Ye, Tong Chen, Xia Hu, Hongzhi Yin:
Unraveling the "Anomaly" in Time Series Anomaly Detection: A Self-supervised Tri-domain Solution. CoRR abs/2311.11235 (2023) - [i103]Zhimeng Jiang, Xiaotian Han, Chao Fan, Zirui Liu, Na Zou, Ali Mostafavi, Xia Hu:
Chasing Fairness in Graphs: A GNN Architecture Perspective. CoRR abs/2312.12369 (2023) - [i102]Guanchu Wang, Yu-Neng Chuang, Fan Yang, Mengnan Du, Chia-Yuan Chang, Shaochen Zhong, Zirui Liu, Zhaozhuo Xu, Kaixiong Zhou, Xuanting Cai, Xia Hu:
LETA: Learning Transferable Attribution for Generic Vision Explainer. CoRR abs/2312.15359 (2023) - [i101]Huiyuan Chen, Vivian Lai, Hongye Jin, Zhimeng Jiang, Mahashweta Das, Xia Hu:
Towards Mitigating Dimensional Collapse of Representations in Collaborative Filtering. CoRR abs/2312.17468 (2023) - 2022
- [j40]Ruixiang Tang, Ninghao Liu, Fan Yang, Na Zou, Xia Hu:
Defense Against Explanation Manipulation. Frontiers Big Data 5: 704203 (2022) - [j39]Kaixiong Zhou, Xiao Huang, Qingquan Song, Rui Chen, Xia Hu:
Auto-GNN: Neural architecture search of graph neural networks. Frontiers Big Data 5 (2022) - [j38]Hao Yuan, Lei Cai, Xia Hu, Jie Wang, Shuiwang Ji:
Interpreting Image Classifiers by Generating Discrete Masks. IEEE Trans. Pattern Anal. Mach. Intell. 44(4): 2019-2030 (2022) - [j37]Weijie Fu, Meng Wang, Mengnan Du, Ninghao Liu, Shijie Hao, Xia Hu:
Differentiated Explanation of Deep Neural Networks With Skewed Distributions. IEEE Trans. Pattern Anal. Mach. Intell. 44(6): 2909-2922 (2022) - [j36]Imtiaz Ahmed, Travis Galoppo, Xia Ben Hu, Yu Ding:
Graph Regularized Autoencoder and its Application in Unsupervised Anomaly Detection. IEEE Trans. Pattern Anal. Mach. Intell. 44(8): 4110-4124 (2022) - [j35]Fangsheng Wu, Mengnan Du, Chao Fan, Ruixiang Tang, Yang Yang, Ali Mostafavi, Xia Hu:
Understanding Social Biases Behind Location Names in Contextual Word Embedding Models. IEEE Trans. Comput. Soc. Syst. 9(2): 458-468 (2022) - [j34]Hongxu Chen, Hongzhi Yin, Tong Chen, Weiqing Wang, Xue Li, Xia Hu:
Social Boosted Recommendation With Folded Bipartite Network Embedding. IEEE Trans. Knowl. Data Eng. 34(2): 914-926 (2022) - [j33]Jiaxu Cui, Bo Yang, Bingyi Sun, Xia Hu, Jiming Liu:
Scalable and Parallel Deep Bayesian Optimization on Attributed Graphs. IEEE Trans. Neural Networks Learn. Syst. 33(1): 103-116 (2022) - [j32]Yuening Li, Zhengzhang Chen, Daochen Zha, Kaixiong Zhou, Haifeng Jin, Haifeng Chen, Xia Hu:
Automated Anomaly Detection via Curiosity-Guided Search and Self-Imitation Learning. IEEE Trans. Neural Networks Learn. Syst. 33(6): 2365-2377 (2022) - [j31]Yijun Bian, Qingquan Song, Mengnan Du, Jun Yao, Huanhuan Chen, Xia Hu:
Subarchitecture Ensemble Pruning in Neural Architecture Search. IEEE Trans. Neural Networks Learn. Syst. 33(12): 7928-7936 (2022) - [c147]Kai Guo, Kaixiong Zhou, Xia Hu, Yu Li, Yi Chang, Xin Wang:
Orthogonal Graph Neural Networks. AAAI 2022: 3996-4004 - [c146]Mengnan Du, Ruixiang Tang, Weijie Fu, Xia Hu:
Towards Debiasing DNN Models from Spurious Feature Influence. AAAI 2022: 9521-9528 - [c145]Zhuoer Wang, Qizhang Feng, Mohinish Chatterjee, Xing Zhao, Yezi Liu, Yuening Li, Abhay Kumar Singh, Frank M. Shipman, Xia Hu, James Caverlee:
RES: An Interpretable Replicability Estimation System for Research Publications. AAAI 2022: 13230-13232 - [c144]Sirui Ding, Ruixiang Tang, Daochen Zha, Na Zou, Kai Zhang, Xiaoqian Jiang, Xia Hu:
Fairly Predicting Graft Failure in Liver Transplant for Organ Assigning. AMIA 2022 - [c143]David E. Hubbard, Sierra Laddusaw, Qiaoyu Tan, Xia Hu:
Analysis Of Acknowledgments of Libraries in the Journal Literature Using Machine Learning. ASIST 2022: 709-711 - [c142]Duc N. M. Hoang, Kaixiong Zhou, Tianlong Chen, Xia Hu, Zhangyang Wang:
AutoCoG: A Unified Data-Model Co-Search Framework for Graph Neural Networks. AutoML 2022: 4/1-16 - [c141]Daochen Zha, Kwei-Herng Lai, Qiaoyu Tan, Sirui Ding, Na Zou, Xia Ben Hu:
Towards Automated Imbalanced Learning with Deep Hierarchical Reinforcement Learning. CIKM 2022: 2476-2485 - [c140]Guanchu Wang, Zaid Pervaiz Bhat, Zhimeng Jiang, Yi-Wei Chen, Daochen Zha, Alfredo Costilla-Reyes, Afshin Niktash, Mehmet Görkem Ulkar, Osman Erman Okman, Xuanting Cai, Xia Ben Hu:
BED: A Real-Time Object Detection System for Edge Devices. CIKM 2022: 4994-4998 - [c139]Zhou Yang, Ninghao Liu, Xia Ben Hu, Fang Jin:
Tutorial on Deep Learning Interpretation: A Data Perspective. CIKM 2022: 5156-5159 - [c138]Qizhang Feng, Ninghao Liu, Fan Yang, Ruixiang Tang, Mengnan Du, Xia Hu:
DEGREE: Decomposition Based Explanation for Graph Neural Networks. ICLR 2022 - [c137]Zhimeng Jiang, Xiaotian Han, Chao Fan, Fan Yang, Ali Mostafavi, Xia Hu:
Generalized Demographic Parity for Group Fairness. ICLR 2022 - [c136]Zhimeng Jiang, Kaixiong Zhou, Zirui Liu, Li Li, Rui Chen, Soo-Hyun Choi, Xia Hu:
An Information Fusion Approach to Learning with Instance-Dependent Label Noise. ICLR 2022 - [c135]Zirui Liu, Kaixiong Zhou, Fan Yang, Li Li, Rui Chen, Xia Hu:
EXACT: Scalable Graph Neural Networks Training via Extreme Activation Compression. ICLR 2022 - [c134]Xiaotian Han, Zhimeng Jiang, Ninghao Liu, Xia Hu:
G-Mixup: Graph Data Augmentation for Graph Classification. ICML 2022: 8230-8248 - [c133]Guanchu Wang, Yu-Neng Chuang, Mengnan Du, Fan Yang, Quan Zhou, Pushkar Tripathi, Xuanting Cai, Xia Ben Hu:
Accelerating Shapley Explanation via Contributive Cooperator Selection. ICML 2022: 22576-22590 - [c132]Kaixiong Zhou, Zirui Liu, Rui Chen, Li Li, Soo-Hyun Choi, Xia Hu:
Table2Graph: Transforming Tabular Data to Unified Weighted Graph. IJCAI 2022: 2420-2426 - [c131]Daochen Zha, Zaid Pervaiz Bhat, Yi-Wei Chen, Yicheng Wang, Sirui Ding, Jiaben Chen, Kwei-Herng Lai, Mohammad Qazim Bhat, Anmoll Kumar Jain, Alfredo Costilla-Reyes, Na Zou, Xia Hu:
AutoVideo: An Automated Video Action Recognition System. IJCAI 2022: 5952-5955 - [c130]Yuening Li, Zhengzhang Chen, Daochen Zha, Mengnan Du, Jingchao Ni, Denghui Zhang, Haifeng Chen, Xia Hu:
Towards Learning Disentangled Representations for Time Series. KDD 2022: 3270-3278 - [c129]Daochen Zha, Louis Feng, Bhargav Bhushanam, Dhruv Choudhary, Jade Nie, Yuandong Tian, Jay Chae, Yinbin Ma, Arun Kejariwal, Xia Hu:
AutoShard: Automated Embedding Table Sharding for Recommender Systems. KDD 2022: 4461-4471 - [c128]Keyu Duan, Zirui Liu, Peihao Wang, Wenqing Zheng, Kaixiong Zhou, Tianlong Chen, Xia Hu, Zhangyang Wang:
A Comprehensive Study on Large-Scale Graph Training: Benchmarking and Rethinking. NeurIPS 2022 - [c127]Daochen Zha, Louis Feng, Qiaoyu Tan, Zirui Liu, Kwei-Herng Lai, Bhargav Bhushanam, Yuandong Tian, Arun Kejariwal, Xia Hu:
DreamShard: Generalizable Embedding Table Placement for Recommender Systems. NeurIPS 2022 - [c126]Huiyuan Chen, Xiaoting Li, Kaixiong Zhou, Xia Hu, Chin-Chia Michael Yeh, Yan Zheng, Hao Yang:
TinyKG: Memory-Efficient Training Framework for Knowledge Graph Neural Recommender Systems. RecSys 2022: 257-267 - [c125]Daochen Zha, Kwei-Herng Lai, Kaixiong Zhou, Xia Hu:
Towards Similarity-Aware Time-Series Classification. SDM 2022: 199-207 - [c124]Huiyuan Chen, Kaixiong Zhou, Kwei-Herng Lai, Xia Hu, Fei Wang, Hao Yang:
Adversarial Graph Perturbations for Recommendations at Scale. SIGIR 2022: 1854-1858 - [c123]Xiaotian Han, Zhimeng Jiang, Ninghao Liu, Qingquan Song, Jundong Li, Xia Hu:
Geometric Graph Representation Learning via Maximizing Rate Reduction. WWW 2022: 1226-1237 - [i100]Daochen Zha, Kwei-Herng Lai, Kaixiong Zhou, Xia Hu:
Towards Similarity-Aware Time-Series Classification. CoRR abs/2201.01413 (2022) - [i99]Qiaoyu Tan, Ninghao Liu, Xiao Huang, Rui Chen, Soo-Hyun Choi, Xia Hu:
MGAE: Masked Autoencoders for Self-Supervised Learning on Graphs. CoRR abs/2201.02534 (2022) - [i98]Ying-Xin Wu, Xiang Wang, An Zhang, Xia Hu, Fuli Feng, Xiangnan He, Tat-Seng Chua:
Deconfounding to Explanation Evaluation in Graph Neural Networks. CoRR abs/2201.08802 (2022) - [i97]Zhimeng Jiang, Xiaotian Han, Chao Fan, Zirui Liu, Na Zou, Ali Mostafavi, Xia Hu:
FMP: Toward Fair Graph Message Passing against Topology Bias. CoRR abs/2202.04187 (2022) - [i96]Xiaotian Han, Zhimeng Jiang, Ninghao Liu, Qingquan Song, Jundong Li, Xia Hu:
Geometric Graph Representation Learning via Maximizing Rate Reduction. CoRR abs/2202.06241 (2022) - [i95]Xiaotian Han, Zhimeng Jiang, Ninghao Liu, Xia Hu:
G-Mixup: Graph Data Augmentation for Graph Classification. CoRR abs/2202.07179 (2022) - [i94]Guanchu Wang, Zaid Pervaiz Bhat, Zhimeng Jiang, Yi-Wei Chen, Daochen Zha, Alfredo Costilla-Reyes, Afshin Niktash, Mehmet Görkem Ulkar, Osman Erman Okman, Xia Ben Hu:
BED: A Real-Time Object Detection System for Edge Devices. CoRR abs/2202.07503 (2022) - [i93]Yicheng Wang, Xiaotian Han, Chia-Yuan Chang, Daochen Zha, Ulisses Braga-Neto, Xia Hu:
Auto-PINN: Understanding and Optimizing Physics-Informed Neural Architecture. CoRR abs/2205.13748 (2022) - [i92]Guanchu Wang, Yu-Neng Chuang, Mengnan Du, Fan Yang, Quan Zhou, Pushkar Tripathi, Xuanting Cai, Xia Ben Hu:
Accelerating Shapley Explanation via Contributive Cooperator Selection. CoRR abs/2206.08529 (2022) - [i91]Qizhang Feng, Mengnan Du, Na Zou, Xia Hu:
Fair Machine Learning in Healthcare: A Review. CoRR abs/2206.14397 (2022) - [i90]Guanchu Wang, Mengnan Du, Ninghao Liu, Na Zou, Xia Ben Hu:
Mitigating Algorithmic Bias with Limited Annotations. CoRR abs/2207.10018 (2022) - [i89]Fan Yang, Qizhang Feng, Kaixiong Zhou, Jiahao Chen, Xia Hu:
Differentially Private Counterfactuals via Functional Mechanism. CoRR abs/2208.02878 (2022) - [i88]Guanchu Wang, Zirui Liu, Zhimeng Jiang, Ninghao Liu, Na Zou, Xia Ben Hu:
Towards Memory Efficient Training via Dual Activation Precision. CoRR abs/2208.04187 (2022) - [i87]Daochen Zha, Louis Feng, Bhargav Bhushanam, Dhruv Choudhary, Jade Nie, Yuandong Tian, Jay Chae, Yinbin Ma, Arun Kejariwal, Xia Hu:
AutoShard: Automated Embedding Table Sharding for Recommender Systems. CoRR abs/2208.06399 (2022) - [i86]Mengnan Du, Fengxiang He, Na Zou, Dacheng Tao, Xia Hu:
Shortcut Learning of Large Language Models in Natural Language Understanding: A Survey. CoRR abs/2208.11857 (2022) - [i85]Daochen Zha, Kwei-Herng Lai, Qiaoyu Tan, Sirui Ding, Na Zou, Xia Ben Hu:
Towards Automated Imbalanced Learning with Deep Hierarchical Reinforcement Learning. CoRR abs/2208.12433 (2022) - [i84]Xiaotian Han, Tong Zhao, Yozen Liu, Xia Hu, Neil Shah:
MLPInit: Embarrassingly Simple GNN Training Acceleration with MLP Initialization. CoRR abs/2210.00102 (2022) - [i83]Daochen Zha, Louis Feng, Qiaoyu Tan, Zirui Liu, Kwei-Herng Lai, Bhargav Bhushanam, Yuandong Tian, Arun Kejariwal, Xia Hu:
DreamShard: Generalizable Embedding Table Placement for Recommender Systems. CoRR abs/2210.02023 (2022) - [i82]Keyu Duan, Zirui Liu, Peihao Wang, Wenqing Zheng, Kaixiong Zhou, Tianlong Chen, Xia Hu, Zhangyang Wang:
A Comprehensive Study on Large-Scale Graph Training: Benchmarking and Rethinking. CoRR abs/2210.07494 (2022) - [i81]Zirui Liu, Shengyuan Chen, Kaixiong Zhou, Daochen Zha, Xiao Huang, Xia Hu:
RSC: Accelerating Graph Neural Networks Training via Randomized Sparse Computations. CoRR abs/2210.10737 (2022) - [i80]Kaixiong Zhou, Zhenyu Zhang, Shengyuan Chen, Tianlong Chen, Xiao Huang, Zhangyang Wang, Xia Hu:
QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional Networks. CoRR abs/2211.07379 (2022) - [i79]Yu-Neng Chuang, Kwei-Herng Lai, Ruixiang Tang, Mengnan Du, Chia-Yuan Chang, Na Zou, Xia Hu:
Mitigating Relational Bias on Knowledge Graphs. CoRR abs/2211.14489 (2022) - [i78]Huiyuan Chen, Xiaoting Li, Kaixiong Zhou, Xia Hu, Chin-Chia Michael Yeh, Yan Zheng, Hao Yang:
TinyKG: Memory-Efficient Training Framework for Knowledge Graph Neural Recommender Systems. CoRR abs/2212.04540 (2022) - [i77]Cameron Diao, Kaixiong Zhou, Xiao Huang, Xia Hu:
MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular Representation Learning. CoRR abs/2212.10614 (2022) - [i76]Qiaoyu Tan, Xin Zhang, Ninghao Liu, Daochen Zha, Li Li, Rui Chen, Soo-Hyun Choi, Xia Hu:
Bring Your Own View: Graph Neural Networks for Link Prediction with Personalized Subgraph Selection. CoRR abs/2212.12488 (2022) - [i75]Zhimeng Jiang, Kaixiong Zhou, Mi Zhang, Rui Chen, Xia Hu, Soo-Hyun Choi:
Adaptive Risk-Aware Bidding with Budget Constraint in Display Advertising. CoRR abs/2212.12533 (2022) - 2021
- [j30]Mengnan Du, Fan Yang, Na Zou, Xia Hu:
Fairness in Deep Learning: A Computational Perspective. IEEE Intell. Syst. 36(4): 25-34 (2021) - [j29]Imtiaz Ahmed, Xia Ben Hu, Mithun P. Acharya, Yu Ding:
Neighborhood Structure Assisted Non-negative Matrix Factorization and Its Application in Unsupervised Point-wise Anomaly Detection. J. Mach. Learn. Res. 22: 34:1-34:32 (2021) - [j28]Mengnan Du, Ninghao Liu, Fan Yang, Xia Hu:
Learning credible DNNs via incorporating prior knowledge and model local explanation. Knowl. Inf. Syst. 63(2): 305-332 (2021) - [j27]Fan Yang, Ninghao Liu, Mengnan Du, Xia Hu:
Generative Counterfactuals for Neural Networks via Attribute-Informed Perturbation. SIGKDD Explor. 23(1): 59-68 (2021) - [j26]Ninghao Liu, Mengnan Du, Ruocheng Guo, Huan Liu, Xia Hu:
Adversarial Attacks and Defenses: An Interpretation Perspective. SIGKDD Explor. 23(1): 86-99 (2021) - [c122]Qiaoyu Tan, Jianwei Zhang, Ninghao Liu, Xiao Huang, Hongxia Yang, Jingren Zhou, Xia Hu:
Dynamic Memory based Attention Network for Sequential Recommendation. AAAI 2021: 4384-4392 - [c121]Huiqi Deng, Na Zou, Mengnan Du, Weifu Chen, Guocan Feng, Xia Hu:
A Unified Taylor Framework for Revisiting Attribution Methods. AAAI 2021: 11462-11469 - [c120]Kwei-Herng Lai, Daochen Zha, Guanchu Wang, Junjie Xu, Yue Zhao, Devesh Kumar, Yile Chen, Purav Zumkhawaka, Minyang Wan, Diego Martinez, Xia Ben Hu:
TODS: An Automated Time Series Outlier Detection System. AAAI 2021: 16060-16062 - [c119]Zirui Liu, Haifeng Jin, Ting-Hsiang Wang, Kaixiong Zhou, Xia Hu:
DivAug: Plug-in Automated Data Augmentation with Explicit Diversity Maximization. ICCV 2021: 4742-4750 - [c118]Yuening Li, Zhengzhang Chen, Daochen Zha, Kaixiong Zhou, Haifeng Jin, Haifeng Chen, Xia Hu:
AutoOD: Neural Architecture Search for Outlier Detection. ICDE 2021: 2117-2122 - [c117]Daochen Zha, Wenye Ma, Lei Yuan, Xia Hu, Ji Liu:
Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments. ICLR 2021 - [c116]Daochen Zha, Jingru Xie, Wenye Ma, Sheng Zhang, Xiangru Lian, Xia Hu, Ji Liu:
DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning. ICML 2021: 12333-12344 - [c115]Sina Mohseni, Fan Yang, Shiva K. Pentyala, Mengnan Du, Yi Liu, Nic Lupfer, Xia Hu, Shuiwang Ji, Eric D. Ragan:
Machine Learning Explanations to Prevent Overtrust in Fake News Detection. ICWSM 2021: 421-431 - [c114]Huiqi Deng, Na Zou, Weifu Chen, Guocan Feng, Mengnan Du, Xia Hu:
Mutual Information Preserving Back-propagation: Learn to Invert for Faithful Attribution. KDD 2021: 258-268 - [c113]Fan Yang, Sahan Suresh Alva, Jiahao Chen, Xia Hu:
Model-Based Counterfactual Synthesizer for Interpretation. KDD 2021: 1964-1974 - [c112]Mengnan Du, Varun Manjunatha, Rajiv Jain, Ruchi Deshpande, Franck Dernoncourt, Jiuxiang Gu, Tong Sun, Xia Hu:
Towards Interpreting and Mitigating Shortcut Learning Behavior of NLU models. NAACL-HLT 2021: 915-929 - [c111]Mengnan Du, Subhabrata Mukherjee, Guanchu Wang, Ruixiang Tang, Ahmed Hassan Awadallah, Xia Ben Hu:
Fairness via Representation Neutralization. NeurIPS 2021: 12091-12103 - [c110]Kwei-Herng Lai, Daochen Zha, Junjie Xu, Yue Zhao, Guanchu Wang, Xia Ben Hu:
Revisiting Time Series Outlier Detection: Definitions and Benchmarks. NeurIPS Datasets and Benchmarks 2021 - [c109]Kaixiong Zhou, Xiao Huang, Daochen Zha, Rui Chen, Li Li, Soo-Hyun Choi, Xia Hu:
Dirichlet Energy Constrained Learning for Deep Graph Neural Networks. NeurIPS 2021: 21834-21846 - [c108]Qiaoyu Tan, Jianwei Zhang, Jiangchao Yao, Ninghao Liu, Jingren Zhou, Hongxia Yang, Xia Hu:
Sparse-Interest Network for Sequential Recommendation. WSDM 2021: 598-606 - [c107]Ruixiang Tang, Mengnan Du, Yuening Li, Zirui Liu, Na Zou, Xia Hu:
Mitigating Gender Bias in Captioning Systems. WWW 2021: 633-645 - [i74]Fan Yang, Ninghao Liu, Mengnan Du, Xia Hu:
Generative Counterfactuals for Neural Networks via Attribute-Informed Perturbation. CoRR abs/2101.06930 (2021) - [i73]Daochen Zha, Wenye Ma, Lei Yuan, Xia Hu, Ji Liu:
Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments. CoRR abs/2101.08152 (2021) - [i72]Qiaoyu Tan, Jianwei Zhang, Jiangchao Yao, Ninghao Liu, Jingren Zhou, Hongxia Yang, Xia Hu:
Sparse-Interest Network for Sequential Recommendation. CoRR abs/2102.09267 (2021) - [i71]Qiaoyu Tan, Jianwei Zhang, Ninghao Liu, Xiao Huang, Hongxia Yang, Jingren Zhou, Xia Hu:
Dynamic Memory based Attention Network for Sequential Recommendation. CoRR abs/2102.09269 (2021) - [i70]Mengnan Du, Varun Manjunatha, Rajiv Jain, Ruchi Deshpande, Franck Dernoncourt, Jiuxiang Gu, Tong Sun, Xia Hu:
Towards Interpreting and Mitigating Shortcut Learning Behavior of NLU models. CoRR abs/2103.06922 (2021) - [i69]Raj Vardhan, Ninghao Liu, Phakpoom Chinprutthiwong, Weijie Fu, Zhenyu Hu, Xia Ben Hu, Guofei Gu:
ExAD: An Ensemble Approach for Explanation-based Adversarial Detection. CoRR abs/2103.11526 (2021) - [i68]Zirui Liu, Haifeng Jin, Ting-Hsiang Wang, Kaixiong Zhou, Xia Hu:
DivAug: Plug-in Automated Data Augmentation with Explicit Diversity Maximization. CoRR abs/2103.14545 (2021) - [i67]Huiqi Deng, Na Zou, Weifu Chen, Guocan Feng, Mengnan Du, Xia Hu:
Mutual Information Preserving Back-propagation: Learn to Invert for Faithful Attribution. CoRR abs/2104.06629 (2021) - [i66]Yuening Li, Zhengzhang Chen, Daochen Zha, Mengnan Du, Denghui Zhang, Haifeng Chen, Xia Hu:
Learning Disentangled Representations for Time Series. CoRR abs/2105.08179 (2021) - [i65]Daochen Zha, Kwei-Herng Lai, Kaixiong Zhou, Xia Hu:
Simplifying Deep Reinforcement Learning via Self-Supervision. CoRR abs/2106.05526 (2021) - [i64]Daochen Zha, Jingru Xie, Wenye Ma, Sheng Zhang, Xiangru Lian, Xia Hu, Ji Liu:
DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning. CoRR abs/2106.06135 (2021) - [i63]Fan Yang, Sahan Suresh Alva, Jiahao Chen, Xia Hu:
Model-Based Counterfactual Synthesizer for Interpretation. CoRR abs/2106.08971 (2021) - [i62]Mengnan Du, Subhabrata Mukherjee, Guanchu Wang, Ruixiang Tang, Ahmed Hassan Awadallah, Xia Ben Hu:
Fairness via Representation Neutralization. CoRR abs/2106.12674 (2021) - [i61]Kaixiong Zhou, Xiao Huang, Daochen Zha, Rui Chen, Li Li, Soo-Hyun Choi, Xia Hu:
Dirichlet Energy Constrained Learning for Deep Graph Neural Networks. CoRR abs/2107.02392 (2021) - [i60]Daochen Zha, Zaid Pervaiz Bhat, Yi-Wei Chen, Yicheng Wang, Sirui Ding, Anmoll Kumar Jain, Mohammad Qazim Bhat, Kwei-Herng Lai, Jiaben Chen, Na Zou, Xia Hu:
AutoVideo: An Automated Video Action Recognition System. CoRR abs/2108.04212 (2021) - [i59]Tianlong Chen, Kaixiong Zhou, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, Zhangyang Wang:
Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study. CoRR abs/2108.10521 (2021) - [i58]Kaixiong Zhou, Ninghao Liu, Fan Yang, Zirui Liu, Rui Chen, Li Li, Soo-Hyun Choi, Xia Hu:
Adaptive Label Smoothing To Regularize Large-Scale Graph Training. CoRR abs/2108.13555 (2021) - [i57]Kai Guo, Kaixiong Zhou, Xia Hu, Yu Li, Yi Chang, Xin Wang:
Orthogonal Graph Neural Networks. CoRR abs/2109.11338 (2021) - [i56]Mengnan Du, Subhabrata Mukherjee, Yu Cheng, Milad Shokouhi, Xia Hu, Ahmed Hassan Awadallah:
What do Compressed Large Language Models Forget? Robustness Challenges in Model Compression. CoRR abs/2110.08419 (2021) - [i55]Haotian Xue, Kaixiong Zhou, Tianlong Chen, Kai Guo, Xia Hu, Yi Chang, Xin Wang:
CAP: Co-Adversarial Perturbation on Weights and Features for Improving Generalization of Graph Neural Networks. CoRR abs/2110.14855 (2021) - [i54]Ruixiang Tang, Ninghao Liu, Fan Yang, Na Zou, Xia Hu:
Defense Against Explanation Manipulation. CoRR abs/2111.04303 (2021) - 2020
- [j25]Yang Yang, Cheng Zhang, Chao Fan, Ali Mostafavi, Xia Hu:
Towards Fairness-Aware Disaster Informatics: an Interdisciplinary Perspective. IEEE Access 8: 201040-201054 (2020) - [j24]Chao Fan, Jiayi Shen, Ali Mostafavi, Xia Hu:
Characterizing reticulation in online social networks during disasters. Appl. Netw. Sci. 5(1): 29 (2020) - [j23]Mengnan Du, Ninghao Liu, Xia Hu:
Techniques for interpretable machine learning. Commun. ACM 63(1): 68-77 (2020) - [j22]Bin Guo, Xing Xie, Lina Yao, Yong Li, Xia Hu:
Correction to: Special issue on recommender system. CCF Trans. Pervasive Comput. Interact. 2(1): 78 (2020) - [j21]Yi-Wei Chen, Qingquan Song, Xi Liu, P. S. Sastry, Xia Hu:
On Robustness of Neural Architecture Search Under Label Noise. Frontiers Big Data 3: 2 (2020) - [j20]Nur Hafieza Ismail, Ninghao Liu, Mengnan Du, Zhe He, Xia Hu:
A deep learning approach for identifying cancer survivors living with post-traumatic stress disorder on Twitter. BMC Medical Informatics Decis. Mak. 20-S(4): 254 (2020) - [j19]Yi-Wei Chen, Qingquan Song, Xia Hu:
Techniques for Automated Machine Learning. SIGKDD Explor. 22(2): 35-50 (2020) - [c106]Yan Zhong, Xiao Huang, Jundong Li, Xia Hu:
Scalable Social Tie Strength Measuring. ASONAM 2020: 288-295 - [c105]Mengnan Du, Shiva K. Pentyala, Yuening Li, Xia Hu:
Towards Generalizable Deepfake Detection with Locality-aware AutoEncoder. CIKM 2020: 325-334 - [c104]Ninghao Liu, Yong Ge, Li Li, Xia Hu, Rui Chen, Soo-Hyun Choi:
Explainable Recommender Systems via Resolving Learning Representations. CIKM 2020: 895-904 - [c103]Haofan Wang, Zifan Wang, Mengnan Du, Fan Yang, Zijian Zhang, Sirui Ding, Piotr Mardziel, Xia Hu:
Score-CAM: Score-Weighted Visual Explanations for Convolutional Neural Networks. CVPR Workshops 2020: 111-119 - [c102]Daochen Zha, Kwei-Herng Lai, Mingyang Wan, Xia Hu:
Meta-AAD: Active Anomaly Detection with Deep Reinforcement Learning. ICDM 2020: 771-780 - [c101]Kaixiong Zhou, Qingquan Song, Xiao Huang, Daochen Zha, Na Zou, Xia Hu:
Multi-Channel Graph Neural Networks. IJCAI 2020: 1352-1358 - [c100]Kwei-Herng Lai, Daochen Zha, Yuening Li, Xia Hu:
Dual Policy Distillation. IJCAI 2020: 3146-3152 - [c99]Daochen Zha, Kwei-Herng Lai, Songyi Huang, Yuanpu Cao, Keerthana Reddy, Juan Vargas, Alex Nguyen, Ruzhe Wei, Junyu Guo, Xia Hu:
RLCard: A Platform for Reinforcement Learning in Card Games. IJCAI 2020: 5264-5266 - [c98]Ruixiang Tang, Mengnan Du, Ninghao Liu, Fan Yang, Xia Hu:
An Embarrassingly Simple Approach for Trojan Attack in Deep Neural Networks. KDD 2020: 218-228 - [c97]Hao Yuan, Jiliang Tang, Xia Hu, Shuiwang Ji:
XGNN: Towards Model-Level Explanations of Graph Neural Networks. KDD 2020: 430-438 - [c96]Kwei-Herng Lai, Daochen Zha, Kaixiong Zhou, Xia Hu:
Policy-GNN: Aggregation Optimization for Graph Neural Networks. KDD 2020: 461-471 - [c95]Qingquan Song, Dehua Cheng, Hanning Zhou, Jiyan Yang, Yuandong Tian, Xia Hu:
Towards Automated Neural Interaction Discovery for Click-Through Rate Prediction. KDD 2020: 945-955 - [c94]Zirui Liu, Qingquan Song, Kaixiong Zhou, Ting-Hsiang Wang, Ying Shan, Xia Hu:
Detecting Interactions from Neural Networks via Topological Analysis. NeurIPS 2020 - [c93]Kaixiong Zhou, Xiao Huang, Yuening Li, Daochen Zha, Rui Chen, Xia Hu:
Towards Deeper Graph Neural Networks with Differentiable Group Normalization. NeurIPS 2020 - [c92]Ting-Hsiang Wang, Xia Hu, Haifeng Jin, Qingquan Song, Xiaotian Han, Zirui Liu:
AutoRec: An Automated Recommender System. RecSys 2020: 582-584 - [c91]Fan Yang, Ninghao Liu, Mengnan Du, Kaixiong Zhou, Shuiwang Ji, Xia Hu:
Deep Neural Networks with Knowledge Instillation. SDM 2020: 370-378 - [c90]Yuening Li, Daochen Zha, Praveen Kumar Venugopal, Na Zou, Xia Hu:
PyODDS: An End-to-end Outlier Detection System with Automated Machine Learning. WWW (Companion Volume) 2020: 153-157 - [c89]Qiaoyu Tan, Ninghao Liu, Xing Zhao, Hongxia Yang, Jingren Zhou, Xia Hu:
Learning to Hash with Graph Neural Networks for Recommender Systems. WWW 2020: 1988-1998 - [e1]James Caverlee, Xia (Ben) Hu, Mounia Lalmas, Wei Wang:
WSDM '20: The Thirteenth ACM International Conference on Web Search and Data Mining, Houston, TX, USA, February 3-7, 2020. ACM 2020, ISBN 978-1-4503-6822-3 [contents] - [i53]Imtiaz Ahmed, Xia Ben Hu, Mithun P. Acharya, Yu Ding:
Neighborhood Structure Assisted Non-negative Matrix Factorization and its Application in Unsupervised Point Anomaly Detection. CoRR abs/2001.06541 (2020) - [i52]Qiaoyu Tan, Ninghao Liu, Xing Zhao, Hongxia Yang, Jingren Zhou, Xia Hu:
Learning to Hash with Graph Neural Networks for Recommender Systems. CoRR abs/2003.01917 (2020) - [i51]Yuening Li, Daochen Zha, Praveen Kumar Venugopal, Na Zou, Xia Hu:
PyODDS: An End-to-end Outlier Detection System with Automated Machine Learning. CoRR abs/2003.05602 (2020) - [i50]Ninghao Liu, Mengnan Du, Xia Hu:
Adversarial Machine Learning: An Interpretation Perspective. CoRR abs/2004.11488 (2020) - [i49]Zhengyang Wang, Xia Hu, Shuiwang Ji:
iCapsNets: Towards Interpretable Capsule Networks for Text Classification. CoRR abs/2006.00075 (2020) - [i48]Hao Yuan, Jiliang Tang, Xia Hu, Shuiwang Ji:
XGNN: Towards Model-Level Explanations of Graph Neural Networks. CoRR abs/2006.02587 (2020) - [i47]Kwei-Herng Lai, Daochen Zha, Yuening Li, Xia Hu:
Dual Policy Distillation. CoRR abs/2006.04061 (2020) - [i46]Kaixiong Zhou, Xiao Huang, Yuening Li, Daochen Zha, Rui Chen, Xia Hu:
Towards Deeper Graph Neural Networks with Differentiable Group Normalization. CoRR abs/2006.06972 (2020) - [i45]Ruixiang Tang, Mengnan Du, Ninghao Liu, Fan Yang, Xia Hu:
An Embarrassingly Simple Approach for Trojan Attack in Deep Neural Networks. CoRR abs/2006.08131 (2020) - [i44]Ruixiang Tang, Mengnan Du, Yuening Li, Zirui Liu, Xia Hu:
Mitigating Gender Bias in Captioning Systems. CoRR abs/2006.08315 (2020) - [i43]Yuening Li, Zhengzhang Chen, Daochen Zha, Kaixiong Zhou, Haifeng Jin, Haifeng Chen, Xia Hu:
AutoOD: Automated Outlier Detection via Curiosity-guided Search and Self-imitation Learning. CoRR abs/2006.11321 (2020) - [i42]Kwei-Herng Lai, Daochen Zha, Kaixiong Zhou, Xia Hu:
Policy-GNN: Aggregation Optimization for Graph Neural Networks. CoRR abs/2006.15097 (2020) - [i41]Qingquan Song, Dehua Cheng, Hanning Zhou, Jiyan Yang, Yuandong Tian, Xia Hu:
Towards Automated Neural Interaction Discovery for Click-Through Rate Prediction. CoRR abs/2007.06434 (2020) - [i40]Ting-Hsiang Wang, Qingquan Song, Xiaotian Han, Zirui Liu, Haifeng Jin, Xia Hu:
AutoRec: An Automated Recommender System. CoRR abs/2007.07224 (2020) - [i39]Sina Mohseni, Fan Yang, Shiva K. Pentyala, Mengnan Du, Yi Liu, Nic Lupfer, Xia Hu, Shuiwang Ji, Eric D. Ragan:
Machine Learning Explanations to Prevent Overtrust in Fake News Detection. CoRR abs/2007.12358 (2020) - [i38]Ninghao Liu, Yong Ge, Li Li, Xia Hu, Rui Chen, Soo-Hyun Choi:
Explainable Recommender Systems via Resolving Learning Representations. CoRR abs/2008.09316 (2020) - [i37]Huiqi Deng, Na Zou, Mengnan Du, Weifu Chen, Guocan Feng, Xia Hu:
A Unified Taylor Framework for Revisiting Attribution Methods. CoRR abs/2008.09695 (2020) - [i36]Daochen Zha, Kwei-Herng Lai, Mingyang Wan, Xia Hu:
Meta-AAD: Active Anomaly Detection with Deep Reinforcement Learning. CoRR abs/2009.07415 (2020) - [i35]Ninghao Liu, Yunsong Meng, Xia Hu, Tie Wang, Bo Long:
Are Interpretations Fairly Evaluated? A Definition Driven Pipeline for Post-Hoc Interpretability. CoRR abs/2009.07494 (2020) - [i34]Kwei-Herng Lai, Daochen Zha, Guanchu Wang, Junjie Xu, Yue Zhao, Devesh Kumar, Yile Chen, Purav Zumkhawaka, Minyang Wan, Diego Martinez, Xia Ben Hu:
TODS: An Automated Time Series Outlier Detection System. CoRR abs/2009.09822 (2020) - [i33]Zirui Liu, Qingquan Song, Kaixiong Zhou, Ting-Hsiang Wang, Ying Shan, Xia Hu:
Towards Interaction Detection Using Topological Analysis on Neural Networks. CoRR abs/2010.13015 (2020) - [i32]Imtiaz Ahmed, Travis Galoppo, Xia Ben Hu, Yu Ding:
Graph Regularized Autoencoder and its Application in Unsupervised Anomaly Detection. CoRR abs/2010.15949 (2020) - [i31]Ruixiang Tang, Mengnan Du, Xia Hu:
Deep Serial Number: Computational Watermarking for DNN Intellectual Property Protection. CoRR abs/2011.08960 (2020)
2010 – 2019
- 2019
- [j18]Hao Yuan, Lei Cai, Zhengyang Wang, Xia Hu, Shaoting Zhang, Shuiwang Ji:
Computational modeling of cellular structures using conditional deep generative networks. Bioinform. 35(12): 2141-2149 (2019) - [j17]Bin Guo, Xing Xie, Lina Yao, Yong Li, Cecilia Mascolo, Xia Hu:
Special issue on recommender system. CCF Trans. Pervasive Comput. Interact. 1(4): 237-239 (2019) - [j16]Qiaoyu Tan, Ninghao Liu, Xia Hu:
Deep Representation Learning for Social Network Analysis. Frontiers Big Data 2: 2 (2019) - [j15]Cheng Zhang, Chao Fan, Wenlin Yao, Xia Hu, Ali Mostafavi:
Social media for intelligent public information and warning in disasters: An interdisciplinary review. Int. J. Inf. Manag. 49: 190-207 (2019) - [j14]Qingquan Song, Hancheng Ge, James Caverlee, Xia Hu:
Tensor Completion Algorithms in Big Data Analytics. ACM Trans. Knowl. Discov. Data 13(1): 6:1-6:48 (2019) - [c88]Jiaxu Cui, Bo Yang, Xia Hu:
Deep Bayesian Optimization on Attributed Graphs. AAAI 2019: 1377-1384 - [c87]Xiao Huang, Qingquan Song, Fan Yang, Xia Hu:
Large-Scale Heterogeneous Feature Embedding. AAAI 2019: 3878-3885 - [c86]Hao Yuan, Yongjun Chen, Xia Hu, Shuiwang Ji:
Interpreting Deep Models for Text Analysis via Optimization and Regularization Methods. AAAI 2019: 5717-5724 - [c85]Mengnan Du, Ninghao Liu, Fan Yang, Xia Hu:
Learning Credible Deep Neural Networks with Rationale Regularization. ICDM 2019: 150-159 - [c84]Daochen Zha, Kwei-Herng Lai, Kaixiong Zhou, Xia Hu:
Experience Replay Optimization. IJCAI 2019: 4243-4249 - [c83]Yuening Li, Ninghao Liu, Jundong Li, Mengnan Du, Xia Hu:
Deep Structured Cross-Modal Anomaly Detection. IJCNN 2019: 1-8 - [c82]Qingquan Song, Shiyu Chang, Xia Hu:
Coupled Variational Recurrent Collaborative Filtering. KDD 2019: 335-343 - [c81]Xiao Huang, Qingquan Song, Yuening Li, Xia Hu:
Graph Recurrent Networks With Attributed Random Walks. KDD 2019: 732-740 - [c80]Ninghao Liu, Qiaoyu Tan, Yuening Li, Hongxia Yang, Jingren Zhou, Xia Hu:
Is a Single Vector Enough?: Exploring Node Polysemy for Network Embedding. KDD 2019: 932-940 - [c79]Haifeng Jin, Qingquan Song, Xia Hu:
Auto-Keras: An Efficient Neural Architecture Search System. KDD 2019: 1946-1956 - [c78]Nur Hafieza Ismail, Ninghao Liu, Mengnan Du, Zhe He, Xia Hu:
Identification of Cancer Survivors Living with PTSD on Social Media. MedInfo 2019: 1468-1469 - [c77]Yin Zhang, Ninghao Liu, Shuiwang Ji, James Caverlee, Xia Hu:
An Interpretable Neural Model with Interactive Stepwise Influence. PAKDD (3) 2019: 528-540 - [c76]Nur Hafieza Ismail, Ninghao Liu, Mengnan Du, Zhe He, Xia Hu:
Using Deep Neural Network to Identify Cancer Survivors Living with Post-Traumatic Stress Disorder on Social Media. SEPDA@ISWC 2019: 48-52 - [c75]Ninghao Liu, Mengnan Du, Xia Hu:
Representation Interpretation with Spatial Encoding and Multimodal Analytics. WSDM 2019: 60-68 - [c74]Mengnan Du, Ninghao Liu, Fan Yang, Shuiwang Ji, Xia Hu:
On Attribution of Recurrent Neural Network Predictions via Additive Decomposition. WWW 2019: 383-393 - [c73]Fan Yang, Shiva K. Pentyala, Sina Mohseni, Mengnan Du, Hao Yuan, Rhema Linder, Eric D. Ragan, Shuiwang Ji, Xia (Ben) Hu:
XFake: Explainable Fake News Detector with Visualizations. WWW 2019: 3600-3604 - [i30]Qingquan Song, Haifeng Jin, Xiao Huang, Xia Hu:
Multi-Label Adversarial Perturbations. CoRR abs/1901.00546 (2019) - [i29]Mengnan Du, Ninghao Liu, Fan Yang, Shuiwang Ji, Xia Hu:
On Attribution of Recurrent Neural Network Predictions via Additive Decomposition. CoRR abs/1903.11245 (2019) - [i28]Sina Mohseni, Eric D. Ragan, Xia Hu:
Open Issues in Combating Fake News: Interpretability as an Opportunity. CoRR abs/1904.03016 (2019) - [i27]Qiaoyu Tan, Ninghao Liu, Xia Hu:
Deep Representation Learning for Social Network Analysis. CoRR abs/1904.08547 (2019) - [i26]Ninghao Liu, Qiaoyu Tan, Yuening Li, Hongxia Yang, Jingren Zhou, Xia Hu:
Is a Single Vector Enough? Exploring Node Polysemy for Network Embedding. CoRR abs/1905.10668 (2019) - [i25]Jiaxu Cui, Bo Yang, Xia Hu:
Deep Bayesian Optimization on Attributed Graphs. CoRR abs/1905.13403 (2019) - [i24]Daochen Zha, Kwei-Herng Lai, Kaixiong Zhou, Xia Hu:
Experience Replay Optimization. CoRR abs/1906.08387 (2019) - [i23]Fan Yang, Mengnan Du, Xia Hu:
Evaluating Explanation Without Ground Truth in Interpretable Machine Learning. CoRR abs/1907.06831 (2019) - [i22]Fan Yang, Shiva K. Pentyala, Sina Mohseni, Mengnan Du, Hao Yuan, Rhema Linder, Eric D. Ragan, Shuiwang Ji, Xia (Ben) Hu:
XFake: Explainable Fake News Detector with Visualizations. CoRR abs/1907.07757 (2019) - [i21]Yuening Li, Ninghao Liu, Jundong Li, Mengnan Du, Xia Hu:
Deep Structured Cross-Modal Anomaly Detection. CoRR abs/1908.03848 (2019) - [i20]Mengnan Du, Ninghao Liu, Fan Yang, Xia Hu:
Learning Credible Deep Neural Networks with Rationale Regularization. CoRR abs/1908.05601 (2019) - [i19]Mengnan Du, Fan Yang, Na Zou, Xia Hu:
Fairness in Deep Learning: A Computational Perspective. CoRR abs/1908.08843 (2019) - [i18]Kaixiong Zhou, Qingquan Song, Xiao Huang, Xia Hu:
Auto-GNN: Neural Architecture Search of Graph Neural Networks. CoRR abs/1909.03184 (2019) - [i17]Mengnan Du, Shiva K. Pentyala, Yuening Li, Xia Hu:
Towards Generalizable Forgery Detection with Locality-aware AutoEncoder. CoRR abs/1909.05999 (2019) - [i16]Yijun Bian, Qingquan Song, Mengnan Du, Jun Yao, Huanhuan Chen, Xia Hu:
Sub-Architecture Ensemble Pruning in Neural Architecture Search. CoRR abs/1910.00370 (2019) - [i15]Zijian Zhang, Fan Yang, Haofan Wang, Xia Hu:
Contextual Local Explanation for Black Box Classifiers. CoRR abs/1910.00768 (2019) - [i14]Yuening Li, Daochen Zha, Na Zou, Xia Hu:
PyODDS: An End-to-End Outlier Detection System. CoRR abs/1910.02575 (2019) - [i13]Daochen Zha, Kwei-Herng Lai, Yuanpu Cao, Songyi Huang, Ruzhe Wei, Junyu Guo, Xia Hu:
RLCard: A Toolkit for Reinforcement Learning in Card Games. CoRR abs/1910.04376 (2019) - [i12]Fan Yang, Zijian Zhang, Haofan Wang, Yuening Li, Xia Hu:
XDeep: An Interpretation Tool for Deep Neural Networks. CoRR abs/1911.01005 (2019) - [i11]Kaixiong Zhou, Qingquan Song, Xiao Huang, Daochen Zha, Na Zou, Xia Hu:
Multi-Channel Graph Convolutional Networks. CoRR abs/1912.08306 (2019) - 2018
- [j13]Xia Hu, Gregor Stiglic, Fei Wang:
Special Issue on Data Mining in Health Informatics. J. Heal. Informatics Res. 2(4): 367-369 (2018) - [j12]Suhas Ranganath, Xia Hu, Jiliang Tang, Suhang Wang, Huan Liu:
Understanding and Identifying Rhetorical Questions in Social Media. ACM Trans. Intell. Syst. Technol. 9(2): 17:1-17:22 (2018) - [j11]Xiao Huang, Jundong Li, Na Zou, Xia Hu:
A General Embedding Framework for Heterogeneous Information Learning in Large-Scale Networks. ACM Trans. Knowl. Discov. Data 12(6): 70:1-70:24 (2018) - [c72]Zepeng Huo, Xiao Huang, Xia Hu:
Link Prediction With Personalized Social Influence. AAAI 2018: 2289-2296 - [c71]Ziwei Zhu, Xia Hu, James Caverlee:
Fairness-Aware Tensor-Based Recommendation. CIKM 2018: 1153-1162 - [c70]Hancheng Ge, Kai Zhang, Majid Alfifi, Xia Hu, James Caverlee:
DisTenC: A Distributed Algorithm for Scalable Tensor Completion on Spark. ICDE 2018: 137-148 - [c69]Fan Yang, Ninghao Liu, Suhang Wang, Xia Hu:
Towards Interpretation of Recommender Systems with Sorted Explanation Paths. ICDM 2018: 667-676 - [c68]Qingquan Song, Haifeng Jin, Xiao Huang, Xia Hu:
Multi-label Adversarial Perturbations. ICDM 2018: 1242-1247 - [c67]Ninghao Liu, Donghwa Shin, Xia Hu:
Contextual Outlier Interpretation. IJCAI 2018: 2461-2467 - [c66]Jinxue Zhang, Jingchao Sun, Rui Zhang, Yanchao Zhang, Xia Hu:
Privacy-Preserving Social Media Data Outsourcing. INFOCOM 2018: 1106-1114 - [c65]Mengnan Du, Ninghao Liu, Qingquan Song, Xia Hu:
Towards Explanation of DNN-based Prediction with Guided Feature Inversion. KDD 2018: 1358-1367 - [c64]Ninghao Liu, Hongxia Yang, Xia Hu:
Adversarial Detection with Model Interpretation. KDD 2018: 1803-1811 - [c63]Ninghao Liu, Xiao Huang, Jundong Li, Xia Hu:
On Interpretation of Network Embedding via Taxonomy Induction. KDD 2018: 1812-1820 - [c62]Xing Zhao, Qingquan Song, James Caverlee, Xia Hu:
TrailMix: An Ensemble Recommender System for Playlist Curation and Continuation. RecSys Challenge 2018: 8:1-8:6 - [c61]Xiao Huang, Qingquan Song, Jundong Li, Xia Hu:
Exploring Expert Cognition for Attributed Network Embedding. WSDM 2018: 270-278 - [r1]Ninghao Liu, Xia Hu:
Spam Detection on Social Networks. Encyclopedia of Social Network Analysis and Mining. 2nd Ed. 2018 - [i10]Mengnan Du, Ninghao Liu, Qingquan Song, Xia Hu:
Towards Explanation of DNN-based Prediction with Guided Feature Inversion. CoRR abs/1804.00506 (2018) - [i9]Yang Yang, Xia Hu, Haoyan Liu, Jiawei Zhang, Zhoujun Li, Philip S. Yu:
Understanding and Monitoring Human Trafficking via Social Sensors: A Sociological Approach. CoRR abs/1805.10617 (2018) - [i8]Yang Yang, Xia Hu, Haoyan Liu, Jiawei Zhang, Zhoujun Li, Philip S. Yu:
r-instance Learning for Missing People Tweets Identification. CoRR abs/1805.10856 (2018) - [i7]Mengnan Du, Ninghao Liu, Xia Hu:
Techniques for Interpretable Machine Learning. CoRR abs/1808.00033 (2018) - 2017
- [j10]Suhas Ranganath, Suhang Wang, Xia Hu, Jiliang Tang, Huan Liu:
Facilitating Time Critical Information Seeking in Social Media. IEEE Trans. Knowl. Data Eng. 29(10): 2197-2209 (2017) - [j9]Mohammad Akbari, Xia Hu, Fei Wang, Tat-Seng Chua:
Wellness Representation of Users in Social Media: Towards Joint Modelling of Heterogeneity and Temporality. IEEE Trans. Knowl. Data Eng. 29(10): 2360-2373 (2017) - [j8]Da Cao, Xiangnan He, Liqiang Nie, Xiaochi Wei, Xia Hu, Shunxiang Wu, Tat-Seng Chua:
Cross-Platform App Recommendation by Jointly Modeling Ratings and Texts. ACM Trans. Inf. Syst. 35(4): 37:1-37:27 (2017) - [c60]Jundong Li, Harsh Dani, Xia Hu, Jiliang Tang, Yi Chang, Huan Liu:
Attributed Network Embedding for Learning in a Dynamic Environment. CIKM 2017: 387-396 - [c59]Xia Hu, Shuiwang Ji:
IDM 2017: Workshop on Interpretable Data Mining - Bridging the Gap between Shallow and Deep Models. CIKM 2017: 2565-2566 - [c58]Liang Wu, Xia Hu, Fred Morstatter, Huan Liu:
Adaptive Spammer Detection with Sparse Group Modeling. ICWSM 2017: 319-326 - [c57]Liang Wu, Xia Hu, Huan Liu:
Early Identification of Personalized Trending Topics in Microblogging. ICWSM 2017: 692-695 - [c56]Liang Wu, Xia Hu, Fred Morstatter, Huan Liu:
Detecting Camouflaged Content Polluters. ICWSM 2017: 696-699 - [c55]Jundong Li, Harsh Dani, Xia Hu, Huan Liu:
Radar: Residual Analysis for Anomaly Detection in Attributed Networks. IJCAI 2017: 2152-2158 - [c54]Ninghao Liu, Xiao Huang, Xia Hu:
Accelerated Local Anomaly Detection via Resolving Attributed Networks. IJCAI 2017: 2337-2343 - [c53]Qingquan Song, Xiao Huang, Hancheng Ge, James Caverlee, Xia Hu:
Multi-Aspect Streaming Tensor Completion. KDD 2017: 435-443 - [c52]Liang Wu, Jundong Li, Xia Hu, Huan Liu:
Gleaning Wisdom from the Past: Early Detection of Emerging Rumors in Social Media. SDM 2017: 99-107 - [c51]Xiao Huang, Jundong Li, Xia Hu:
Accelerated Attributed Network Embedding. SDM 2017: 633-641 - [c50]Cheng Cao, Hancheng Ge, Haokai Lu, Xia Hu, James Caverlee:
What Are You Known For?: Learning User Topical Profiles with Implicit and Explicit Footprints. SIGIR 2017: 743-752 - [c49]