default search action
Mustafa Mukadam
Person information
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c39]Letian Fu, Gaurav Datta, Huang Huang, William Chung-Ho Panitch, Jaimyn Drake, Joseph Ortiz, Mustafa Mukadam, Mike Lambeta, Roberto Calandra, Ken Goldberg:
A Touch, Vision, and Language Dataset for Multimodal Alignment. ICML 2024 - [i37]Letian Fu, Gaurav Datta, Huang Huang, William Chung-Ho Panitch, Jaimyn Drake, Joseph Ortiz, Mustafa Mukadam, Mike Lambeta, Roberto Calandra, Ken Goldberg:
A Touch, Vision, and Language Dataset for Multimodal Alignment. CoRR abs/2402.13232 (2024) - 2023
- [c38]Thomas Weng, David Held, Franziska Meier, Mustafa Mukadam:
Neural Grasp Distance Fields for Robot Manipulation. ICRA 2023: 1814-1821 - [c37]Carolina Higuera, Siyuan Dong, Byron Boots, Mustafa Mukadam:
Neural Contact Fields: Tracking Extrinsic Contact with Tactile Sensing. ICRA 2023: 12576-12582 - [c36]Benjamin Bolte, Austin S. Wang, Jimmy Yang, Mustafa Mukadam, Mrinal Kalakrishnan, Chris Paxton:
USA-Net: Unified Semantic and Affordance Representations for Robot Memory. IROS 2023: 1-8 - [c35]Dishank Bansal, Ricky T. Q. Chen, Mustafa Mukadam, Brandon Amos:
TaskMet: Task-driven Metric Learning for Model Learning. NeurIPS 2023 - [c34]Taosha Fan, Joseph Ortiz, Ming Hsiao, Maurizio Monge, Jing Dong, Todd D. Murphey, Mustafa Mukadam:
Decentralization and Acceleration Enables Large-Scale Bundle Adjustment. Robotics: Science and Systems 2023 - [i36]Carolina Higuera, Byron Boots, Mustafa Mukadam:
Learning to Read Braille: Bridging the Tactile Reality Gap with Diffusion Models. CoRR abs/2304.01182 (2023) - [i35]Benjamin Bolte, Austin S. Wang, Jimmy Yang, Mustafa Mukadam, Mrinal Kalakrishnan, Chris Paxton:
USA-Net: Unified Semantic and Affordance Representations for Robot Memory. CoRR abs/2304.12164 (2023) - [i34]Taosha Fan, Joseph Ortiz, Ming Hsiao, Maurizio Monge, Jing Dong, Todd D. Murphey, Mustafa Mukadam:
Decentralization and Acceleration Enables Large-Scale Bundle Adjustment. CoRR abs/2305.07026 (2023) - [i33]Carolina Higuera, Joseph Ortiz, Haozhi Qi, Luis Pineda, Byron Boots, Mustafa Mukadam:
Perceiving Extrinsic Contacts from Touch Improves Learning Insertion Policies. CoRR abs/2309.16652 (2023) - [i32]Dishank Bansal, Ricky T. Q. Chen, Mustafa Mukadam, Brandon Amos:
TaskMet: Task-Driven Metric Learning for Model Learning. CoRR abs/2312.05250 (2023) - [i31]Sudharshan Suresh, Haozhi Qi, Tingfan Wu, Taosha Fan, Luis Pineda, Mike Lambeta, Jitendra Malik, Mrinal Kalakrishnan, Roberto Calandra, Michael Kaess, Joseph Ortiz, Mustafa Mukadam:
Neural feels with neural fields: Visuo-tactile perception for in-hand manipulation. CoRR abs/2312.13469 (2023) - 2022
- [c33]Sudharshan Suresh, Zilin Si, Stuart Anderson, Michael Kaess, Mustafa Mukadam:
MidasTouch: Monte-Carlo inference over distributions across sliding touch. CoRL 2022: 319-331 - [c32]Jason Toskov, Rhys Newbury, Mustafa Mukadam, Dana Kulic, Akansel Cosgun:
In-Hand Gravitational Pivoting Using Tactile Sensing. CoRL 2022: 2284-2293 - [c31]Paloma Sodhi, Michael Kaess, Mustafa Mukadam, Stuart Anderson:
PatchGraph: In-hand tactile tracking with learned surface normals. ICRA 2022: 2164-2170 - [c30]Luis Pineda, Taosha Fan, Maurizio Monge, Shobha Venkataraman, Paloma Sodhi, Ricky T. Q. Chen, Joseph Ortiz, Daniel DeTone, Austin S. Wang, Stuart Anderson, Jing Dong, Brandon Amos, Mustafa Mukadam:
Theseus: A Library for Differentiable Nonlinear Optimization. NeurIPS 2022 - [c29]Joseph Ortiz, Alexander Clegg, Jing Dong, Edgar Sucar, David Novotný, Michael Zollhöfer, Mustafa Mukadam:
iSDF: Real-Time Neural Signed Distance Fields for Robot Perception. Robotics: Science and Systems 2022 - [i30]Joseph Ortiz, Alexander Clegg, Jing Dong, Edgar Sucar, David Novotný, Michael Zollhöfer, Mustafa Mukadam:
iSDF: Real-Time Neural Signed Distance Fields for Robot Perception. CoRR abs/2204.02296 (2022) - [i29]Christopher Agia, Krishna Murthy Jatavallabhula, Mohamed Khodeir, Ondrej Miksik, Vibhav Vineet, Mustafa Mukadam, Liam Paull, Florian Shkurti:
TASKOGRAPHY: Evaluating robot task planning over large 3D scene graphs. CoRR abs/2207.05006 (2022) - [i28]Luis Pineda, Taosha Fan, Maurizio Monge, Shobha Venkataraman, Paloma Sodhi, Ricky T. Q. Chen, Joseph Ortiz, Daniel DeTone, Austin S. Wang, Stuart Anderson, Jing Dong, Brandon Amos, Mustafa Mukadam:
Theseus: A Library for Differentiable Nonlinear Optimization. CoRR abs/2207.09442 (2022) - [i27]Jason Toskov, Rhys Newbury, Mustafa Mukadam, Dana Kulic, Akansel Cosgun:
In-Hand Gravitational Pivoting Using Tactile Sensing. CoRR abs/2210.05068 (2022) - [i26]Carolina Higuera, Siyuan Dong, Byron Boots, Mustafa Mukadam:
Neural Contact Fields: Tracking Extrinsic Contact with Tactile Sensing. CoRR abs/2210.09297 (2022) - [i25]Sudharshan Suresh, Zilin Si, Stuart Anderson, Michael Kaess, Mustafa Mukadam:
MidasTouch: Monte-Carlo inference over distributions across sliding touch. CoRR abs/2210.14210 (2022) - [i24]Thomas Weng, David Held, Franziska Meier, Mustafa Mukadam:
Neural Grasp Distance Fields for Robot Manipulation. CoRR abs/2211.02647 (2022) - 2021
- [j3]Ching-An Cheng, Mustafa Mukadam, Jan Issac, Stan Birchfield, Dieter Fox, Byron Boots, Nathan D. Ratliff:
RMPflow: A Geometric Framework for Generation of Multitask Motion Policies. IEEE Trans Autom. Sci. Eng. 18(3): 968-987 (2021) - [c28]Christopher Agia, Krishna Murthy Jatavallabhula, Mohamed Khodeir, Ondrej Miksik, Vibhav Vineet, Mustafa Mukadam, Liam Paull, Florian Shkurti:
Taskography: Evaluating robot task planning over large 3D scene graphs. CoRL 2021: 46-58 - [c27]Bernardo Aceituno-Cabezas, Alberto Rodriguez, Shubham Tulsiani, Abhinav Gupta, Mustafa Mukadam:
A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation. CoRL 2021: 137-147 - [c26]Paloma Sodhi, Eric Dexheimer, Mustafa Mukadam, Stuart Anderson, Michael Kaess:
LEO: Learning Energy-based Models in Factor Graph Optimization. CoRL 2021: 234-244 - [c25]Kaichun Mo, Leonidas J. Guibas, Mustafa Mukadam, Abhinav Gupta, Shubham Tulsiani:
Where2Act: From Pixels to Actions for Articulated 3D Objects. ICCV 2021: 6793-6803 - [c24]Taosha Fan, Kalyan Vasudev Alwala, Donglai Xiang, Weipeng Xu, Todd D. Murphey, Mustafa Mukadam:
Revitalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation. ICCV 2021: 11437-11446 - [c23]Rogerio Bonatti, Arthur Bucker, Sebastian A. Scherer, Mustafa Mukadam, Jessica K. Hodgins:
Batteries, camera, action! Learning a semantic control space for expressive robot cinematography. ICRA 2021: 7302-7308 - [c22]Paloma Sodhi, Michael Kaess, Mustafa Mukadam, Stuart Anderson:
Learning Tactile Models for Factor Graph-based Estimation. ICRA 2021: 13686-13692 - [c21]Kalyan Vasudev Alwala, Mustafa Mukadam:
Joint Sampling and Trajectory Optimization over Graphs for Online Motion Planning. IROS 2021: 4700-4707 - [c20]Andrew Szot, Alexander Clegg, Eric Undersander, Erik Wijmans, Yili Zhao, John M. Turner, Noah Maestre, Mustafa Mukadam, Devendra Singh Chaplot, Oleksandr Maksymets, Aaron Gokaslan, Vladimir Vondrus, Sameer Dharur, Franziska Meier, Wojciech Galuba, Angel X. Chang, Zsolt Kira, Vladlen Koltun, Jitendra Malik, Manolis Savva, Dhruv Batra:
Habitat 2.0: Training Home Assistants to Rearrange their Habitat. NeurIPS 2021: 251-266 - [c19]Meera Hahn, Devendra Singh Chaplot, Shubham Tulsiani, Mustafa Mukadam, James M. Rehg, Abhinav Gupta:
No RL, No Simulation: Learning to Navigate without Navigating. NeurIPS 2021: 26661-26673 - [i23]Kaichun Mo, Leonidas J. Guibas, Mustafa Mukadam, Abhinav Gupta, Shubham Tulsiani:
Where2Act: From Pixels to Actions for Articulated 3D Objects. CoRR abs/2101.02692 (2021) - [i22]Taosha Fan, Kalyan Vasudev Alwala, Donglai Xiang, Weipeng Xu, Todd D. Murphey, Mustafa Mukadam:
Revitalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation. CoRR abs/2105.13965 (2021) - [i21]Andrew Szot, Alexander Clegg, Eric Undersander, Erik Wijmans, Yili Zhao, John M. Turner, Noah Maestre, Mustafa Mukadam, Devendra Singh Chaplot, Oleksandr Maksymets, Aaron Gokaslan, Vladimir Vondrus, Sameer Dharur, Franziska Meier, Wojciech Galuba, Angel X. Chang, Zsolt Kira, Vladlen Koltun, Jitendra Malik, Manolis Savva, Dhruv Batra:
Habitat 2.0: Training Home Assistants to Rearrange their Habitat. CoRR abs/2106.14405 (2021) - [i20]Paloma Sodhi, Eric Dexheimer, Mustafa Mukadam, Stuart Anderson, Michael Kaess:
LEO: Learning Energy-based Models in Graph Optimization. CoRR abs/2108.02274 (2021) - [i19]Meera Hahn, Devendra Singh Chaplot, Shubham Tulsiani, Mustafa Mukadam, James M. Rehg, Abhinav Gupta:
No RL, No Simulation: Learning to Navigate without Navigating. CoRR abs/2110.09470 (2021) - [i18]Bernardo Aceituno-Cabezas, Alberto Rodriguez, Shubham Tulsiani, Abhinav Gupta, Mustafa Mukadam:
A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation. CoRR abs/2111.05318 (2021) - [i17]Paloma Sodhi, Michael Kaess, Mustafa Mukadam, Stuart Anderson:
PatchGraph: In-hand tactile tracking with learned surface normals. CoRR abs/2111.07524 (2021) - 2020
- [c18]Mohak Bhardwaj, Byron Boots, Mustafa Mukadam:
Differentiable Gaussian Process Motion Planning. ICRA 2020: 10598-10604 - [c17]Giovanni Sutanto, Austin S. Wang, Yixin Lin, Mustafa Mukadam, Gaurav S. Sukhatme, Akshara Rai, Franziska Meier:
Encoding Physical Constraints in Differentiable Newton-Euler Algorithm. L4DC 2020: 804-813 - [c16]Shikhar Bahl, Mustafa Mukadam, Abhinav Gupta, Deepak Pathak:
Neural Dynamic Policies for End-to-End Sensorimotor Learning. NeurIPS 2020 - [i16]Giovanni Sutanto, Austin S. Wang, Yixin Lin, Mustafa Mukadam, Gaurav S. Sukhatme, Akshara Rai, Franziska Meier:
Encoding Physical Constraints in Differentiable Newton-Euler Algorithm. CoRR abs/2001.08861 (2020) - [i15]Ching-An Cheng, Mustafa Mukadam, Jan Issac, Stan Birchfield, Dieter Fox, Byron Boots, Nathan D. Ratliff:
RMPflow: A Geometric Framework for Generation of Multi-Task Motion Policies. CoRR abs/2007.14256 (2020) - [i14]Kalyan Vasudev Alwala, Mustafa Mukadam:
Joint Sampling and Trajectory Optimization over Graphs for Online Motion Planning. CoRR abs/2011.07171 (2020) - [i13]Rogerio Bonatti, Arthur Bucker, Sebastian A. Scherer, Mustafa Mukadam, Jessica K. Hodgins:
Batteries, camera, action! Learning a semantic control space for expressive robot cinematography. CoRR abs/2011.10118 (2020) - [i12]Shikhar Bahl, Mustafa Mukadam, Abhinav Gupta, Deepak Pathak:
Neural Dynamic Policies for End-to-End Sensorimotor Learning. CoRR abs/2012.02788 (2020) - [i11]Paloma Sodhi, Michael Kaess, Mustafa Mukadam, Stuart Anderson:
Learning Tactile Models for Factor Graph-based State Estimation. CoRR abs/2012.03768 (2020)
2010 – 2019
- 2019
- [j2]Mustafa Mukadam, Jing Dong, Frank Dellaert, Byron Boots:
STEAP: simultaneous trajectory estimation and planning. Auton. Robots 43(2): 415-434 (2019) - [c15]Mustafa Mukadam, Ching-An Cheng, Dieter Fox, Byron Boots, Nathan D. Ratliff:
Riemannian Motion Policy Fusion through Learnable Lyapunov Function Reshaping. CoRL 2019: 204-219 - [c14]Muhammad Asif Rana, Anqi Li, Harish Ravichandar, Mustafa Mukadam, Sonia Chernova, Dieter Fox, Byron Boots, Nathan D. Ratliff:
Learning Reactive Motion Policies in Multiple Task Spaces from Human Demonstrations. CoRL 2019: 1457-1468 - [c13]Alexander Sasha Lambert, Mustafa Mukadam, Balakumar Sundaralingam, Nathan D. Ratliff, Byron Boots, Dieter Fox:
Joint Inference of Kinematic and Force Trajectories with Visuo-Tactile Sensing. ICRA 2019: 3165-3171 - [c12]Keshav Kolur, Sahit Chintalapudi, Byron Boots, Mustafa Mukadam:
Online Motion Planning Over Multiple Homotopy Classes with Gaussian Process Inference. IROS 2019: 2358-2364 - [c11]Anqi Li, Mustafa Mukadam, Magnus Egerstedt, Byron Boots:
Multi-objective Policy Generation for Multi-robot Systems Using Riemannian Motion Policies. ISRR 2019: 258-274 - [i10]Anqi Li, Mustafa Mukadam, Magnus Egerstedt, Byron Boots:
Multi-Objective Policy Generation for Multi-Robot Systems Using Riemannian Motion Policies. CoRR abs/1902.05177 (2019) - [i9]Alexander Lambert, Mustafa Mukadam, Balakumar Sundaralingam, Nathan D. Ratliff, Byron Boots, Dieter Fox:
Joint Inference of Kinematic and Force Trajectories with Visuo-Tactile Sensing. CoRR abs/1903.03699 (2019) - [i8]Mohak Bhardwaj, Byron Boots, Mustafa Mukadam:
Differentiable Gaussian Process Motion Planning. CoRR abs/1907.09591 (2019) - [i7]Keshav Kolur, Sahit Chintalapudi, Byron Boots, Mustafa Mukadam:
Online Motion Planning Over Multiple Homotopy Classes with Gaussian Process Inference. CoRR abs/1908.00641 (2019) - [i6]Mustafa Mukadam, Ching-An Cheng, Dieter Fox, Byron Boots, Nathan D. Ratliff:
Riemannian Motion Policy Fusion through Learnable Lyapunov Function Reshaping. CoRR abs/1910.02646 (2019) - 2018
- [j1]Mustafa Mukadam, Jing Dong, Xinyan Yan, Frank Dellaert, Byron Boots:
Continuous-time Gaussian process motion planning via probabilistic inference. Int. J. Robotics Res. 37(11) (2018) - [c10]Jing Dong, Mustafa Mukadam, Byron Boots, Frank Dellaert:
Sparse Gaussian Processes on Matrix Lie Groups: A Unified Framework for Optimizing Continuous-Time Trajectories. ICRA 2018: 6497-6504 - [c9]Muhammad Asif Rana, Mustafa Mukadam, Seyed Reza Ahmadzadeh, Sonia Chernova, Byron Boots:
Learning Generalizable Robot Skills from Demonstrations in Cluttered Environments. IROS 2018: 4655-4660 - [c8]Ching-An Cheng, Mustafa Mukadam, Jan Issac, Stan Birchfield, Dieter Fox, Byron Boots, Nathan D. Ratliff:
RMPflow: A Computational Graph for Automatic Motion Policy Generation. WAFR 2018: 441-457 - [i5]Mustafa Mukadam, Jing Dong, Frank Dellaert, Byron Boots:
STEAP: simultaneous trajectory estimation and planning. CoRR abs/1807.10425 (2018) - [i4]Muhammad Asif Rana, Mustafa Mukadam, Seyed Reza Ahmadzadeh, Sonia Chernova, Byron Boots:
Learning Generalizable Robot Skills from Demonstrations in Cluttered Environments. CoRR abs/1808.00349 (2018) - [i3]Ching-An Cheng, Mustafa Mukadam, Jan Issac, Stan Birchfield, Dieter Fox, Byron Boots, Nathan D. Ratliff:
RMPflow: A Computational Graph for Automatic Motion Policy Generation. CoRR abs/1811.07049 (2018) - 2017
- [c7]Muhammad Asif Rana, Mustafa Mukadam, Seyed Reza Ahmadzadeh, Sonia Chernova, Byron Boots:
Towards Robust Skill Generalization: Unifying Learning from Demonstration and Motion Planning. CoRL 2017: 109-118 - [c6]Mustafa Mukadam, Ching-An Cheng, Xinyan Yan, Byron Boots:
Approximately optimal continuous-time motion planning and control via Probabilistic Inference. ICRA 2017: 664-671 - [c5]Eric Huang, Mustafa Mukadam, Zhen Liu, Byron Boots:
Motion planning with graph-based trajectories and Gaussian process inference. ICRA 2017: 5591-5598 - [c4]Mustafa Mukadam, Jing Dong, Frank Dellaert, Byron Boots:
Simultaneous Trajectory Estimation and Planning via Probabilistic Inference. Robotics: Science and Systems 2017 - [i2]Mustafa Mukadam, Ching-An Cheng, Xinyan Yan, Byron Boots:
Approximately Optimal Continuous-Time Motion Planning and Control via Probabilistic Inference. CoRR abs/1702.07335 (2017) - [i1]Mustafa Mukadam, Jing Dong, Xinyan Yan, Frank Dellaert, Byron Boots:
Continuous-Time Gaussian Process Motion Planning via Probabilistic Inference. CoRR abs/1707.07383 (2017) - 2016
- [c3]Mustafa Mukadam, Xinyan Yan, Byron Boots:
Gaussian Process Motion planning. ICRA 2016: 9-15 - [c2]Jing Dong, Mustafa Mukadam, Frank Dellaert, Byron Boots:
Motion Planning as Probabilistic Inference using Gaussian Processes and Factor Graphs. Robotics: Science and Systems 2016 - 2014
- [c1]Mustafa Mukadam, Andy Borum, Timothy Bretl:
Quasi-static manipulation of a planar elastic rod using multiple robotic grippers. IROS 2014: 55-60
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-30 20:31 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint