default search action
Sang-Woon Kim
Person information
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j29]Xiao-Li Wei, Chunxia Zhang, Hongtao Wang, Chengli Tan, Deng Xiong, Baisong Jiang, Jiangshe Zhang, Sang-Woon Kim:
Seismic Data Interpolation via Denoising Diffusion Implicit Models With Coherence-Corrected Resampling. IEEE Trans. Geosci. Remote. Sens. 62: 1-17 (2024) - 2022
- [j28]Xiao-Li Wei, Chunxia Zhang, Sang-Woon Kim, Kai-Li Jing, Yong-Jun Wang, Shuang Xu, Zhuangzhuang Xie:
Seismic fault detection using convolutional neural networks with focal loss. Comput. Geosci. 158: 104968 (2022) - [j27]Xiao-Li Wei, Chunxia Zhang, Hongtao Wang, Zixiang Zhao, Xiong Deng, Shuang Xu, Jiangshe Zhang, Sang-Woon Kim:
Hybrid Loss-Guided Coarse-to-Fine Model for Seismic Data Consecutively Missing Trace Reconstruction. IEEE Trans. Geosci. Remote. Sens. 60: 1-15 (2022) - 2021
- [c41]Chun-Xia Zhang, Xiaoli Wei, Sang-Woon Kim:
Empirical Evaluation on Utilizing CNN-features for Seismic Patch Classification. ICPRAM 2021: 166-173 - 2020
- [j26]Chun-Xia Zhang, Sang-Woon Kim, Jiang-She Zhang:
On selective learning in stochastic stepwise ensembles. Int. J. Mach. Learn. Cybern. 11(1): 217-230 (2020)
2010 – 2019
- 2019
- [j25]Sang-Woon Kim, Joon-Min Gil:
Research paper classification systems based on TF-IDF and LDA schemes. Hum. centric Comput. Inf. Sci. 9: 30 (2019) - 2017
- [j24]B. John Oommen, Sang-Woon Kim:
Occlusion-based estimation of independent multinomial random variables using occurrence and sequential information. Eng. Appl. Artif. Intell. 63: 69-84 (2017) - [j23]Thanh-Binh Le, Sugwon Hong, Sang-Woon Kim:
Multi-view based unlabeled data selection using feature transformation methods for semiboost learning. Neurocomputing 249: 277-289 (2017) - 2016
- [j22]Chun-Xia Zhang, Jiang-She Zhang, Sang-Woon Kim:
PBoostGA: pseudo-boosting genetic algorithm for variable ranking and selection. Comput. Stat. 31(4): 1237-1262 (2016) - [j21]Thanh-Binh Le, Sang-Woon Kim:
On measuring confidence levels using multiple views of feature set for useful unlabeled data selection. Neurocomputing 173: 1589-1601 (2016) - [j20]Yu-Seung Ma, Sang-Woon Kim:
Mutation testing cost reduction by clustering overlapped mutants. J. Syst. Softw. 115: 18-30 (2016) - [c40]B. John Oommen, Sang-Woon Kim:
On the Foundations of Multinomial Sequence Based Estimation. ICCCI (1) 2016: 218-229 - [c39]B. John Oommen, Sang-Woon Kim:
Multinomial Sequence Based Estimation Using Contiguous Subsequences of Length Three. ICIAR 2016: 243-253 - [c38]Trung Hai Nguyen, Thanh-Binh Le, Sang-Woon Kim:
Choosing unlabeled examples for SemiBoost using modified cuckoo search algorithms. ICNC-FSKD 2016: 534-541 - 2015
- [j19]Thanh-Binh Le, Sang-Woon Kim:
Modified criterion to select useful unlabeled data for improving semi-supervised support vector machines. Pattern Recognit. Lett. 60-61: 48-56 (2015) - [c37]Thanh-Binh Le, Sang-Woon Kim:
On Selecting Useful Unlabeled Data Using Multi-view Learning Techniques. ICPRAM (1) 2015: 157-164 - [c36]Thanh-Binh Le, Sang-Woon Kim:
Comparison of Adjusted Methods for Selecting Useful Unlabeled Data for Semi-Supervised Learning Algorithms. IEA/AIE 2015: 526-535 - 2014
- [j18]Sang-Woon Kim:
An empirical study on improving dissimilarity-based classifications using one-shot similarity measure. Digit. Signal Process. 27: 69-78 (2014) - [j17]Thanh-Binh Le, Sang-Woon Kim:
On incrementally using a small portion of strong unlabeled data for semi-supervised learning algorithms. Pattern Recognit. Lett. 41: 53-64 (2014) - [c35]Thanh-Binh Le, Sang-Woon Kim:
Simply recycled selection and incrementally reinforced selection methods applicable for semi-supervised learning algorithms. ICEIC 2014: 1-2 - [c34]Thanh-Binh Le, Sang-Woon Kim:
On Selecting Helpful Unlabeled Data for Improving Semi-Supervised Support Vector Machines. ICPRAM 2014: 48-59 - [c33]Robert P. W. Duin, Manuele Bicego, Mauricio Orozco-Alzate, Sang-Woon Kim, Marco Loog:
Metric Learning in Dissimilarity Space for Improved Nearest Neighbor Performance. S+SSPR 2014: 183-192 - 2013
- [j16]Sang-Woon Kim, Yu-Seung Ma, Yong Rae Kwon:
Combining weak and strong mutation for a noninterpretive Java mutation system. Softw. Test. Verification Reliab. 23(8): 647-668 (2013) - [c32]Sang-Woon Kim:
On using Additional Unlabeled Data for Improving Dissimilarity-Based Classifications. ICPRAM 2013: 132-137 - 2012
- [j15]Sang-Woon Kim, B. John Oommen:
On using prototype reduction schemes to optimize locally linear reconstruction methods. Pattern Recognit. 45(1): 498-511 (2012) - [c31]Thanh-Binh Le, Sang-Woon Kim:
On Improving Semi-supervised Marginboost Incrementally using Strong Unlabeled Data. ICPRAM (1) 2012: 265-268 - 2011
- [j14]Sang-Woon Kim:
An empirical evaluation on dimensionality reduction schemes for dissimilarity-based classifications. Pattern Recognit. Lett. 32(6): 816-823 (2011) - [c30]Sang-Woon Kim, Robert P. W. Duin:
Dissimilarity-Based Classifications in Eigenspaces. CIARP 2011: 425-432 - [c29]Evensen E. Masaki, Sang-Woon Kim:
An Improvement of Dissimilarity-Based Classifications Using SIFT Algorithm. PReMI 2011: 74-79 - [e1]César San Martín, Sang-Woon Kim:
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications - 16th Iberoamerican Congress, CIARP 2011, Pucón, Chile, November 15-18, 2011. Proceedings. Lecture Notes in Computer Science 7042, Springer 2011, ISBN 978-3-642-25084-2 [contents] - 2010
- [j13]Sang-Woon Kim:
A pre-clustering technique for optimizing subclass discriminant analysis. Pattern Recognit. Lett. 31(6): 462-468 (2010) - [c28]Sang-Woon Kim, Seunghwan Kim:
A Multiple Combining Method for Optimizing Dissimilarity-Based Classification. ACIIDS (2) 2010: 310-319 - [c27]Sang-Woon Kim, B. John Oommen:
On Optimizing Locally Linear Nearest Neighbour Reconstructions Using Prototype Reduction Schemes. Australasian Conference on Artificial Intelligence 2010: 153-163 - [c26]Sang-Woon Kim, Robert P. W. Duin:
On Improving Dissimilarity-Based Classifications Using a Statistical Similarity Measure. CIARP 2010: 418-425 - [c25]Sang-Woon Kim:
On Reducing Dimensionality of Dissimilarity Matrices for Optimizing DBC - An Experimental Comparison. ICAART (1) 2010: 235-240 - [c24]Sang-Woon Kim, Robert P. W. Duin:
An Empirical Comparison of Kernel-Based and Dissimilarity-Based Feature Spaces. SSPR/SPR 2010: 559-568
2000 – 2009
- 2009
- [j12]Sang-Woon Kim, B. John Oommen:
On using prototype reduction schemes to enhance the computation of volume-based inter-class overlap measures. Pattern Recognit. 42(11): 2695-2704 (2009) - [c23]Sang-Woon Kim, Robert P. W. Duin:
A Combine-Correct-Combine Scheme for Optimizing Dissimilarity-Based Classifiers. CIARP 2009: 425-432 - 2008
- [j11]B. John Oommen, Sang-Woon Kim, M. T. Samuel, Ole-Christoffer Granmo:
A Solution to the Stochastic Point Location Problem in Metalevel Nonstationary Environments. IEEE Trans. Syst. Man Cybern. Part B 38(2): 466-476 (2008) - [j10]Sang-Woon Kim, B. John Oommen:
On Using Prototype Reduction Schemes to Optimize Kernel-Based Fisher Discriminant Analysis. IEEE Trans. Syst. Man Cybern. Part B 38(2): 564-570 (2008) - [c22]Sang-Woon Kim, B. John Oommen:
A Fast Computation of Inter-class Overlap Measures Using Prototype Reduction Schemes. Canadian AI 2008: 173-184 - [c21]Sang-Woon Kim:
On Optimizing Subclass Discriminant Analysis Using a Pre-clustering Technique. CIARP 2008: 292-300 - [c20]Sang-Woon Kim, Jian Gao:
On Using Dimensionality Reduction Schemes to Optimize Dissimilarity-Based Classifiers. CIARP 2008: 309-316 - [c19]Sang-Woon Kim, Jian Gao:
A Dynamic Programming Technique for Optimizing Dissimilarity-Based Classifiers. SSPR/SPR 2008: 654-663 - 2007
- [j9]Sang-Woon Kim, B. John Oommen:
On using prototype reduction schemes to optimize dissimilarity-based classification. Pattern Recognit. 40(11): 2946-2957 (2007) - [j8]B. John Oommen, Sang-Woon Kim, Geir Horn:
On the estimation of independent binomial random variables using occurrence and sequential information. Pattern Recognit. 40(11): 3263-3276 (2007) - [c18]Sang-Woon Kim, Robert P. W. Duin:
On Combining Dissimilarity-Based Classifiers to Solve the Small Sample Size Problem for Appearance-Based Face Recognition. Canadian AI 2007: 110-121 - [c17]Sang-Woon Kim, Robert P. W. Duin:
On Using a Pre-clustering Technique to Optimize LDA-Based Classifiers for Appearance-Based Face Recognition. CIARP 2007: 466-476 - [c16]B. John Oommen, Sang-Woon Kim, Mathew Samuel, Ole-Christoffer Granmo:
Stochastic Point Location in Non-stationary Environments and Its Applications. IEA/AIE 2007: 845-854 - 2006
- [j7]Sang-Woon Kim, B. John Oommen:
Prototype reduction schemes applicable for non-stationary data sets. Pattern Recognit. 39(2): 209-222 (2006) - [c15]Sang-Woon Kim:
On Using a Dissimilarity Representation Method to Solve the Small Sample Size Problem for Face Recognition. ACIVS 2006: 1174-1185 - [c14]Sang-Woon Kim, B. John Oommen:
On Optimizing Dissimilarity-Based Classification Using Prototype Reduction Schemes. ICIAR (1) 2006: 15-28 - [c13]Sang-Woon Kim, Soo-Hwan Oh:
On Adaptively Learning HMM-Based Classifiers Using Split-Merge Operations. IEA/AIE 2006: 668-673 - [c12]Sang-Woon Kim:
Optimizing Dissimilarity-Based Classifiers Using a Newly Modified Hausdorff Distance. PKAW 2006: 177-186 - [c11]B. John Oommen, Sang-Woon Kim, Geir Horn:
On the Theory and Applications of Sequence Based Estimation of Independent Binomial Random Variables. SSPR/SPR 2006: 8-21 - [c10]Sang-Woon Kim, B. John Oommen:
On Optimizing Kernel-Based Fisher Discriminant Analysis Using Prototype Reduction Schemes. SSPR/SPR 2006: 826-834 - 2005
- [j6]Sang-Woon Kim, B. John Oommen:
On Utilizing Search Methods to Select Subspace Dimensions for Kernel-Based Nonlinear Subspace Classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 27(1): 136-141 (2005) - [j5]Sang-Woon Kim, B. John Oommen:
On Using Prototype Reduction Schemes and Classifier Fusion Strategies to Optimize Kernel-Based Nonlinear Subspace Methods. IEEE Trans. Pattern Anal. Mach. Intell. 27(3): 455-460 (2005) - [c9]Sang-Woon Kim, B. John Oommen:
Time-Varying Prototype Reduction Schemes Applicable for Non-stationary Data Sets. Australian Conference on Artificial Intelligence 2005: 614-623 - 2004
- [j4]Sang-Woon Kim, B. John Oommen:
On using prototype reduction schemes to optimize kernel-based nonlinear subspace methods. Pattern Recognit. 37(2): 227-239 (2004) - [j3]Sang-Woon Kim, B. John Oommen:
Enhancing prototype reduction schemes with recursion: a method applicable for "large" data sets. IEEE Trans. Syst. Man Cybern. Part B 34(3): 1384-1397 (2004) - [c8]Sang-Woon Kim, B. John Oommen:
Selecting Subspace Dimensions for Kernel-Based Nonlinear Subspace Classifiers Using Intelligent Search Methods. Australian Conference on Artificial Intelligence 2004: 1115-1121 - [c7]Sang-Woon Kim, Zhe-Xue Li, Yoshinao Aoki:
On intelligent avatar communication using Korean, Chinese and Japanese sign-languages: an overview. ICARCV 2004: 747-752 - 2003
- [j2]Sang-Woon Kim, B. John Oommen:
A brief taxonomy and ranking of creative prototype reduction schemes. Pattern Anal. Appl. 6(3): 232-244 (2003) - [j1]Sang-Woon Kim, B. John Oommen:
Enhancing prototype reduction schemes with LVQ3-type algorithms. Pattern Recognit. 36(5): 1083-1093 (2003) - [c6]Sang-Woon Kim, B. John Oommen:
On Using Prototype Reduction Schemes and Classifier Fusion Strategies to Optimize Kernel-Based Nonlinear Subspace Methods. Australian Conference on Artificial Intelligence 2003: 783-795 - 2002
- [c5]Sang-Woon Kim, B. John Oommen:
Optimizing Kernel-Based Nonlinear Subspace Methods Using Prototype Reduction Schemes. Australian Joint Conference on Artificial Intelligence 2002: 155-166 - [c4]Sang-Woon Kim, B. John Oommen:
On Utilizing LVQ3-Type Algorithms to Enhance Prototype Reduction Schemes. PRIS 2002: 242-256 - [c3]Sang-Woon Kim, B. John Oommen:
Creative prototype reduction schemes: a taxonomy and ranking. SMC (2) 2002: 6 - [c2]Sang-Woon Kim, B. John Oommen:
Recursive Prototype Reduction Schemes Applicable for Large Data Sets. SSPR/SPR 2002: 528-537
1990 – 1999
- 1999
- [c1]Sang-Woon Kim, Jong-Woo Lee, Ji-Yong Oh, Yoshinao Aoki:
A Comparative Study on the Sign-Language Communication Systems Between Korea and Japan Through 2D and 3D Character Models on the Internet. ICIP (4) 1999: 227-231
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-01 00:09 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint