default search action
32nd UAI 2016: New York City, NY, USA
- Alexander Ihler, Dominik Janzing:
Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence, UAI 2016, June 25-29, 2016, New York City, NY, USA. AUAI Press 2016, ISBN 978-0-9966431-1-5 - Adrian Weller:
Characterizing Tightness of LP Relaxations by Forbidding Signed Minors. - Shuangyin Li, Rong Pan, Yu Zhang, Qiang Yang:
Correlated Tag Learning in Topic Model. - Pengtao Xie, Jin Kyu Kim, Yi Zhou, Qirong Ho, Abhimanu Kumar, Yaoliang Yu, Eric P. Xing:
Lighter-Communication Distributed Machine Learning via Sufficient Factor Broadcasting. - Krzysztof Chalupka, Tobias Bischoff, Frederick Eberhardt, Pietro Perona:
Unsupervised Discovery of El Nino Using Causal Feature Learning on Microlevel Climate Data. - Changying Du, Changde Du, Guoping Long, Qing He, Yucheng Li:
Online Bayesian Multiple Kernel Bipartite Ranking. - José M. Peña:
Alternative Markov and Causal Properties for Acyclic Directed Mixed Graphs. - Francisco J. R. Ruiz, Michalis K. Titsias, David M. Blei:
Overdispersed Black-Box Variational Inference. - Bo Liu, Luwan Zhang, Ji Liu:
Dantzig Selector with an Approximately Optimal Denoising Matrix and its Application in Sparse Reinforcement Learning. - Jan Leike, Tor Lattimore, Laurent Orseau, Marcus Hutter:
Thompson Sampling is Asymptotically Optimal in General Environments. - Felix Leibfried, Daniel A. Braun:
Bounded Rational Decision-Making in Feedforward Neural Networks. - Peng Yang, Peilin Zhao, Zhen Hai, Wei Liu, Steven C. H. Hoi, Xiaoli Li:
Efficient Multi-Class Selective Sampling on Graphs. - James R. Foulds, Joseph Geumlek, Max Welling, Kamalika Chaudhuri:
On the Theory and Practice of Privacy-Preserving Bayesian Data Analysis. - Sanghack Lee, Vasant G. Honavar:
A Characterization of Markov Equivalence Classes of Relational Causal Models under Path Semantics. - Yoad Lewenberg, Yoram Bachrach, Lucas Bordeaux, Pushmeet Kohli:
Political Dimensionality Estimation Using a Probabilistic Graphical Model. - Nebojsa Jojic, Alessandro Perina, Dongwoo Kim:
Hierarchical learning of grids of microtopics. - Ralf Eggeling, Mikko Koivisto:
Pruning Rules for Learning Parsimonious Context Trees. - Dongeun Lee, Rafael Lima, Jaesik Choi:
Improving Imprecise Compressive Sensing Models. - Laurent Orseau, Stuart Armstrong:
Safely Interruptible Agents. - Tahrima Rahman, Vibhav Gogate:
Merging Strategies for Sum-Product Networks: From Trees to Graphs. - Julien-Charles Levesque, Christian Gagné, Robert Sabourin:
Bayesian Hyperparameter Optimization for Ensemble Learning. - Marek Petrik, Ronny Luss:
Interpretable Policies for Dynamic Product Recommendations. - Julie Nutini, Behrooz Sepehry, Issam H. Laradji, Mark Schmidt, Hoyt A. Koepke, Alim Virani:
Convergence Rates for Greedy Kaczmarz Algorithms, and Randomized Kaczmarz Rules Using the Orthogonality Graph. - Jean Honorio, Tommi S. Jaakkola:
Structured Prediction: From Gaussian Perturbations to Linear-Time Principled Algorithms. - Dilin Wang, John W. Fisher III, Qiang Liu:
Efficient Observation Selection in Probabilistic Graphical Models Using Bayesian Lower Bounds. - Hanzhang Hu, Alexander Grubb, J. Andrew Bagnell, Martial Hebert:
Efficient Feature Group Sequencing for Anytime Linear Prediction. - Jan Leike, Jessica Taylor, Benya Fallenstein:
A Formal Solution to the Grain of Truth Problem. - Mohammad Gheshlaghi Azar, Eva L. Dyer, Konrad P. Körding:
Convex Relaxation Regression: Black-Box Optimization of Smooth Functions by Learning Their Convex Envelopes. - Hugo Gilbert, Bruno Zanuttini, Paul Weng, Paolo Viappiani, Esther Nicart:
Model-Free Reinforcement Learning with Skew-Symmetric Bilinear Utilities. - Shi Zong, Hao Ni, Kenny Sung, Nan Rosemary Ke, Zheng Wen, Branislav Kveton:
Cascading Bandits for Large-Scale Recommendation Problems. - Alex Gaunt, Diana Borsa, Yoram Bachrach:
Training Neural Nets to Aggregate Crowdsourced Responses. - Tianfan Fu, Luo Luo, Zhihua Zhang:
Quasi-Newton Hamiltonian Monte Carlo. - Chun-Liang Li, Barnabás Póczos:
Utilize Old Coordinates: Faster Doubly Stochastic Gradients for Kernel Methods. - Xiangli Chen, Mathew Monfort, Brian D. Ziebart, Peter Carr:
Adversarial Inverse Optimal Control for General Imitation Learning Losses and Embodiment Transfer. - Trung Le, Phuong Duong, Mi Dinh, Tu Dinh Nguyen, Vu Nguyen, Dinh Q. Phung:
Budgeted Semi-supervised Support Vector Machine . - Frédéric Koriche:
Online Forest Density Estimation. - Amar Shah, Zoubin Ghahramani:
Markov Beta Processes for Time Evolving Dictionary Learning. - Xi Tan, Syed A. Z. Naqvi, Yuan (Alan) Qi, Katherine A. Heller, Vinayak A. Rao:
Content-based Modeling of Reciprocal Relationships using Hawkes and Gaussian Processes. - Lu Tian, Pan Xu, Quanquan Gu:
Forward Backward Greedy Algorithms for Multi-Task Learning with Faster Rates. - Wen Sun, Roberto Capobianco, Geoffrey J. Gordon, J. Andrew Bagnell, Byron Boots:
Learning to Smooth with Bidirectional Predictive State Inference Machines. - Scott Yang, Mehryar Mohri:
Adaptive Algorithms and Data-Dependent Guarantees for Bandit Convex Optimization. - Seth R. Flaxman, Dino Sejdinovic, John P. Cunningham, Sarah Filippi:
Bayesian Learning of Kernel Embeddings. - Junxiang Chen, Jennifer G. Dy:
A Generative Block-Diagonal Model for Clustering. - Francois Fagan, Jalaj Bhandari, John P. Cunningham:
Elliptical Slice Sampling with Expectation Propagation. - Joseph Futoma, Mark P. Sendak, Blake Cameron, Katherine A. Heller:
Scalable Joint Modeling of Longitudinal and Point Process Data for Disease Trajectory Prediction and Improving Management of Chronic Kidney Disease. - Arto Klami, Aditya Jitta:
Probabilistic Size-constrained Microclustering. - Hans Kersting, Philipp Hennig:
Active Uncertainty Calibration in Bayesian ODE Solvers. - Kareem Amin, Michael P. Wellman, Satinder Singh:
Gradient Methods for Stackelberg Games. - Jianhui Chen, Tianbao Yang, Qihang Lin, Lijun Zhang, Yi Chang:
Optimal Stochastic Strongly Convex Optimization with a Logarithmic Number of Projections. - David P. Wipf, Yue Dong, Bo Xin:
Subspace Clustering with a Twist. - David M. Pennock, Vasilis Syrgkanis, Jennifer Wortman Vaughan:
Bounded Rationality in Wagering Mechanisms. - Raghuraman Gopalan:
Bridging Heterogeneous Domains With Parallel Transport For Vision and Multimedia Applications. - Harikrishna Narasimhan, David C. Parkes:
A General Statistical Framework for Designing Strategy-proof Assignment Mechanisms. - Jinghui Chen, Quanquan Gu:
Accelerated Stochastic Block Coordinate Gradient Descent for Sparsity Constrained Nonconvex Optimization. - Patrice Perny, Paolo Viappiani, Abdellah Boukhatem:
Incremental Preference Elicitation for Decision Making Under Risk with the Rank-Dependent Utility Model. - Tomás Kocák, Gergely Neu, Michal Valko:
Online learning with Erdos-Renyi side-observation graphs. - Leonard J. Schulman, Piyush Srivastava:
Stability of Causal Inference. - David T. Arbour, Katerina Marazopoulou, David D. Jensen:
Inferring Causal Direction from Relational Data. - Mohammad Emtiyaz Khan, Reza Babanezhad, Wu Lin, Mark Schmidt, Masashi Sugiyama:
Faster Stochastic Variational Inference using Proximal-Gradient Methods with General Divergence Functions. - Roy Fox, Ari Pakman, Naftali Tishby:
Taming the Noise in Reinforcement Learning via Soft Updates. - Mustafa Anil Koçak, Dennis E. Shasha, Elza Erkip:
Conjugate Conformal Prediction for Online Binary Classification. - Dmitry Malioutov, Abhishek Kumar, Ian En-Hsu Yen:
Large-scale Submodular Greedy Exemplar Selection with Structured Similarity Matrices. - Md Amran Siddiqui, Alan Fern, Thomas G. Dietterich, Shubhomoy Das:
Finite Sample Complexity of Rare Pattern Anomaly Detection. - Chao Lan, Jianxin Wang, Jun Huan:
Towards a Theoretical Understanding of Negative Transfer in Collective Matrix Factorization. - Qiang Liu:
Importance Weighted Consensus Monte Carlo for Distributed Bayesian Inference. - An T. Nguyen, Byron C. Wallace, Matthew Lease:
A Correlated Worker Model for Grouped, Imbalanced and Multitask Data. - Matej Balog, Balaji Lakshminarayanan, Zoubin Ghahramani, Daniel M. Roy, Yee Whye Teh:
The Mondrian Kernel. - Jalal Etesami, Negar Kiyavash, Kun Zhang, Kushagra Singhal:
Learning Network of Multivariate Hawkes Processes: A Time Series Approach. - Lirong Xia:
Bayesian Estimators As Voting Rules. - Craig Boutilier, Tyler Lu:
Budget Allocation using Weakly Coupled, Constrained Markov Decision Processes. - Paul K. Rubenstein, Kacper Chwialkowski, Arthur Gretton:
A Kernel Test for Three-Variable Interactions with Random Processes. - Antonio Sutera, Gilles Louppe, Vân Anh Huynh-Thu, Louis Wehenkel, Pierre Geurts:
Context-dependent feature analysis with random forests. - Daniele Calandriello, Alessandro Lazaric, Michal Valko:
Analysis of Nyström method with sequential ridge leverage scores. - Tianxiang Gao, Vladimir Jojic:
Degrees of Freedom in Deep Neural Networks. - Viet Huynh, Dinh Q. Phung, Svetha Venkatesh, XuanLong Nguyen, Matthew D. Hoffman, Hung Hai Bui:
Scalable Nonparametric Bayesian Multilevel Clustering. - Chune Li, Yongyi Mao, Richong Zhang, Jinpeng Huai:
On Hyper-Parameter Estimation In Empirical Bayes: A Revisit of The MacKay Algorithm. - Morteza Haghir Chehreghani, Mostafa Haghir Chehreghani:
Modeling Transitivity in Complex Networks. - Mitchell McIntire, Daniel Ratner, Stefano Ermon:
Sparse Gaussian Processes for Bayesian Optimization. - Akshay Balsubramani, Aaditya Ramdas:
Sequential Nonparametric Testing with the Law of the Iterated Logarithm. - Yves-Laurent Kom Samo, Alexander Vervuurt:
Stochastic Portfolio Theory: A Machine Learning Approach. - Muthukumaran Chandrasekaran, Adam Eck, Prashant Doshi, Leenkiat Soh:
Individual Planning in Open and Typed Agent Systems. - Brooks Paige, Dino Sejdinovic, Frank D. Wood:
Super-Sampling with a Reservoir. - Nan Rong, Joseph Y. Halpern, Ashutosh Saxena:
MDPs with Unawareness in Robotics. - Kun Zhang, Jiji Zhang, Biwei Huang, Bernhard Schölkopf, Clark Glymour:
On the Identifiability and Estimation of Functional Causal Models in the Presence of Outcome-Dependent Selection. - Deepak Venugopal, Somdeb Sarkhel, Kyle Cherry:
Non-parametric Domain Approximation for Scalable Gibbs Sampling in MLNs. - DJ Strouse, David J. Schwab:
The Deterministic Information Bottleneck.
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.