default search action
IISWC 2018: Raleigh, NC, USA
- 2018 IEEE International Symposium on Workload Characterization, IISWC 2018, Raleigh, NC, USA, September 30 - October 2, 2018. IEEE Computer Society 2018, ISBN 978-1-5386-6780-4
- Akshitha Sriraman, Thomas F. Wenisch:
μ Suite: A Benchmark Suite for Microservices. 1-12 - Jack Wadden, Tommy Tracy II, Elaheh Sadredini, Lingxi Wu, Chunkun Bo, Jesse Du, Yizhou Wei, Jeffrey Udall, Matthew Wallace, Mircea Stan, Kevin Skadron:
AutomataZoo: A Modern Automata Processing Benchmark Suite. 13-24 - Nadjib Mammeri, Ben H. H. Juurlink:
VComputeBench: A Vulkan Benchmark Suite for GPGPU on Mobile and Embedded GPUs. 25-35 - Mohamed Ismail, G. Edward Suh:
Quantitative Overhead Analysis for Python. 36-47 - Wanling Gao, Jianfeng Zhan, Lei Wang, Chunjie Luo, Zhen Jia, Daoyi Zheng, Chen Zheng, Xiwen He, Hainan Ye, Haibin Wang, Rui Ren:
Data Motif-based Proxy Benchmarks for Big Data and AI Workloads. 48-58 - Justin Deters, Jiaye Wu, Yifan Xu, I-Ting Angelina Lee:
A NUMA-Aware Provably-Efficient Task-Parallel Platform Based on the Work-First Principle. 59-70 - Qinzhe Wu, Steven Flolid, Shuang Song, Junyong Deng, Lizy K. John:
Invited Paper for the Hot Workloads Special Session Hot Regions in SPEC CPU2017. 71-77 - Brian Crites, Radhakrishna Sanka, Joshua Lippai, Jeffrey McDaniel, Philip Brisk, Douglas Densmore:
ParchMint: A Microfluidics Benchmark Suite. 78-79 - Calvin Bulla, Lluc Alvarez, Miquel Moretó, Ramon Bertran, Alper Buyuktosunoglu, Pradip Bose:
ChopStiX: Systematic Extraction of Code-Representative Microbenchmarks. 80-81 - Chunwei Xia, Jiacheng Zhao, Huimin Cui, Xiaobing Feng:
Characterizing DNN Models for Edge-Cloud Computing. 82-83 - Meysam Roodi, Andreas Moshovos:
Gene Sequencing: Where Time Goes. 84-85 - Milos Nikolic, Mostafa Mahmoud, Andreas Moshovos:
Characterizing Sources of Ineffectual Computations in Deep Learning Networks. 86-87 - Hongyu Zhu, Mohamed Akrout, Bojian Zheng, Andrew Pelegris, Anand Jayarajan, Amar Phanishayee, Bianca Schroeder, Gennady Pekhimenko:
Benchmarking and Analyzing Deep Neural Network Training. 88-100 - Jack Turner, José Cano, Valentin Radu, Elliot J. Crowley, Michael F. P. O'Boyle, Amos J. Storkey:
Characterising Across-Stack Optimisations for Deep Convolutional Neural Networks. 101-110 - Kevin Siu, Dylan Malone Stuart, Mostafa Mahmoud, Andreas Moshovos:
Memory Requirements for Convolutional Neural Network Hardware Accelerators. 111-121 - Saiful A. Mojumder, Marcia S. Louis, Yifan Sun, Amir Kavyan Ziabari, José L. Abellán, John Kim, David R. Kaeli, Ajay Joshi:
Profiling DNN Workloads on a Volta-based DGX-1 System. 122-133 - Abraham Addisie, Hiwot Kassa, Opeoluwa Matthews, Valeria Bertacco:
Heterogeneous Memory Subsystem for Natural Graph Analytics. 134-145 - Mohammad Hossein Hajkazemi, Mania Abdi, Peter Desnoyers:
Minimizing Read Seeks for SMR Disk. 146-155 - Nima Elyasi, Anand Sivasubramaniam, Mahmut T. Kandemir, Chita R. Das:
Reviving Zombie Pages on SSDs. 156-167 - Mohammad Alian, Krishna Parasuram Srinivasan, Nam Sung Kim:
Simulating PCI-Express Interconnect for Future System Exploration. 168-178 - Arkaprava Basu, Joseph L. Greathouse, Guru Venkataramani, Ján Veselý:
Interference from GPU System Service Requests. 179-190 - Ang Li, Shuaiwen Leon Song, Jieyang Chen, Xu Liu, Nathan R. Tallent, Kevin J. Barker:
Tartan: Evaluating Modern GPU Interconnect via a Multi-GPU Benchmark Suite. 191-202 - Vignesh Balaji, Brandon Lucia:
When is Graph Reordering an Optimization? Studying the Effect of Lightweight Graph Reordering Across Applications and Input Graphs. 203-214
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.