default search action
Thomas Pock
Person information
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j53]Stefan Herdy, Emilio Rodríguez-Caballero, Thomas Pock, Bettina Weber:
Utilization of deep learning tools to map and monitor biological soil crusts. Ecol. Informatics 79: 102417 (2024) - [j52]Martin Zach, Erich Kobler, Antonin Chambolle, Thomas Pock:
Product of Gaussian Mixture Diffusion Models. J. Math. Imaging Vis. 66(4): 504-528 (2024) - [j51]Dominik Narnhofer, Andreas Habring, Martin Holler, Thomas Pock:
Posterior-Variance-Based Error Quantification for Inverse Problems in Imaging. SIAM J. Imaging Sci. 17(1): 301-333 (2024) - [j50]Muhamed Kuric, Jan Ahmetspahic, Thomas Pock:
Total Generalized Variation on a Tree. SIAM J. Imaging Sci. 17(2): 1040-1077 (2024) - [j49]Andreas Habring, Martin Holler, Thomas Pock:
Subgradient Langevin Methods for Sampling from Nonsmooth Potentials. SIAM J. Math. Data Sci. 6(4): 897-925 (2024) - [c102]Edi Muskardin, Martin Tappler, Ingo Pill, Bernhard K. Aichernig, Thomas Pock:
On the Relationship Between RNN Hidden-State Vectors and Semantic Structures. ACL (Findings) 2024: 5641-5658 - [c101]Filip Ilic, He Zhao, Thomas Pock, Richard P. Wildes:
Selective, Interpretable and Motion Consistent Privacy Attribute Obfuscation for Action Recognition. CVPR 2024: 18730-18739 - [c100]Robert Harb, Thomas Pock, Heimo Müller:
Diffusion-based generation of Histopathological Whole Slide Images at a Gigapixel scale. WACV 2024: 5119-5128 - [i58]Filip Ilic, He Zhao, Thomas Pock, Richard P. Wildes:
Selective, Interpretable, and Motion Consistent Privacy Attribute Obfuscation for Action Recognition. CoRR abs/2403.12710 (2024) - [i57]Lea Bogensperger, Dominik Narnhofer, Alexander Falk, Konrad Schindler, Thomas Pock:
FlowSDF: Flow Matching for Medical Image Segmentation Using Distance Transforms. CoRR abs/2405.18087 (2024) - 2023
- [j48]Martin Zach, Florian Knoll, Thomas Pock:
Stable Deep MRI Reconstruction Using Generative Priors. IEEE Trans. Medical Imaging 42(12): 3817-3832 (2023) - [c99]Lea Bogensperger, Dominik Narnhofer, Filip Ilic, Thomas Pock:
Score-Based Generative Models for Medical Image Segmentation Using Signed Distance Functions. DAGM 2023: 3-17 - [c98]Martin Zach, Thomas Pock, Erich Kobler, Antonin Chambolle:
Explicit Diffusion of Gaussian Mixture Model Based Image Priors. SSVM 2023: 3-15 - [c97]Lea Bogensperger, Antonin Chambolle, Alexander Effland, Thomas Pock:
Learned Discretization Schemes for the Second-Order Total Generalized Variation. SSVM 2023: 484-497 - [c96]Lydia Lindner, Alexander Effland, Filip Ilic, Thomas Pock, Erich Kobler:
Lightweight Video Denoising using Aggregated Shifted Window Attention. WACV 2023: 351-360 - [i56]Martin Zach, Thomas Pock, Erich Kobler, Antonin Chambolle:
Explicit Diffusion of Gaussian Mixture Model Based Image Priors. CoRR abs/2302.08411 (2023) - [i55]Tatiana A. Bubba, Luca Calatroni, Ambra Catozzi, Serena Crisci, Thomas Pock, Monica Pragliola, Siiri Rautio, Danilo Riccio, Andrea Sebastiani:
Bilevel learning of regularization models and their discretization for image deblurring and super-resolution. CoRR abs/2302.10056 (2023) - [i54]Erich Kobler, Thomas Pock:
Learning Gradually Non-convex Image Priors Using Score Matching. CoRR abs/2302.10502 (2023) - [i53]Lea Bogensperger, Dominik Narnhofer, Filip Ilic, Thomas Pock:
Score-Based Generative Models for Medical Image Segmentation using Signed Distance Functions. CoRR abs/2303.05966 (2023) - [i52]Lea Bogensperger, Antonin Chambolle, Alexander Effland, Thomas Pock:
Learned Discretization Schemes for the Second-Order Total Generalized Variation. CoRR abs/2303.09349 (2023) - [i51]Tim Tsz-Kit Lau, Han Liu, Thomas Pock:
Non-Log-Concave and Nonsmooth Sampling via Langevin Monte Carlo Algorithms. CoRR abs/2305.15988 (2023) - [i50]Edi Muskardin, Martin Tappler, Ingo Pill, Bernhard K. Aichernig, Thomas Pock:
On the Relationship Between RNN Hidden State Vectors and Semantic Ground Truth. CoRR abs/2306.16854 (2023) - [i49]Robert Harb, Thomas Pock, Heimo Müller:
Diffusion-based generation of Histopathological Whole Slide Images at a Gigapixel scale. CoRR abs/2311.08199 (2023) - 2022
- [j47]Erich Kobler, Alexander Effland, Karl Kunisch, Thomas Pock:
Total Deep Variation: A Stable Regularization Method for Inverse Problems. IEEE Trans. Pattern Anal. Mach. Intell. 44(12): 9163-9180 (2022) - [j46]Lea Bogensperger, Antonin Chambolle, Thomas Pock:
Convergence of a Piggyback-Style Method for the Differentiation of Solutions of Standard Saddle-Point Problems. SIAM J. Math. Data Sci. 4(3): 1003-1030 (2022) - [j45]Dominik Narnhofer, Alexander Effland, Erich Kobler, Kerstin Hammernik, Florian Knoll, Thomas Pock:
Bayesian Uncertainty Estimation of Learned Variational MRI Reconstruction. IEEE Trans. Medical Imaging 41(2): 279-291 (2022) - [c95]Thomas Pinetz, Erich Kobler, Thomas Pock, Alexander Effland:
Blind Single Image Super-Resolution via Iterated Shared Prior Learning. GCPR 2022: 151-165 - [c94]Filip Ilic, Thomas Pock, Richard P. Wildes:
Is Appearance Free Action Recognition Possible? ECCV (4) 2022: 156-173 - [c93]Markus Hofinger, Erich Kobler, Alexander Effland, Thomas Pock:
Learned Variational Video Color Propagation. ECCV (23) 2022: 512-530 - [i48]Martin Zach, Erich Kobler, Thomas Pock:
Computed Tomography Reconstruction using Generative Energy-Based Priors. CoRR abs/2203.12658 (2022) - [i47]Filip Ilic, Thomas Pock, Richard P. Wildes:
Is Appearance Free Action Recognition Possible? CoRR abs/2207.06261 (2022) - [i46]Martin Zach, Florian Knoll, Thomas Pock:
Stable deep MRI reconstruction using Generative Priors. CoRR abs/2210.13834 (2022) - [i45]Dominik Narnhofer, Andreas Habring, Martin Holler, Thomas Pock:
Posterior-Variance-Based Error Quantification for Inverse Problems in Imaging. CoRR abs/2212.12499 (2022) - 2021
- [j44]Patrick Knöbelreiter, Thomas Pock:
Learned Collaborative Stereo Refinement. Int. J. Comput. Vis. 129(9): 2565-2582 (2021) - [j43]Alexander Effland, Erich Kobler, Thomas Pock, Marko Rajkovic, Martin Rumpf:
Image Morphing in Deep Feature Spaces: Theory and Applications. J. Math. Imaging Vis. 63(2): 309-327 (2021) - [j42]Karli Gillette, Matthias A. F. Gsell, Anton J. Prassl, Elias Karabelas, Ursula Reiter, Gert Reiter, Thomas Grandits, Christian Payer, Darko Stern, Martin Urschler, Jason D. Bayer, Christoph M. Augustin, Aurel Neic, Thomas Pock, Edward J. Vigmond, Gernot Plank:
A Framework for the generation of digital twins of cardiac electrophysiology from clinical 12-leads ECGs. Medical Image Anal. 71: 102080 (2021) - [j41]Antonin Chambolle, Thomas Pock:
Learning Consistent Discretizations of the Total Variation. SIAM J. Imaging Sci. 14(2): 778-813 (2021) - [j40]Thomas Pinetz, Erich Kobler, Thomas Pock, Alexander Effland:
Shared Prior Learning of Energy-Based Models for Image Reconstruction. SIAM J. Imaging Sci. 14(4): 1706-1748 (2021) - [c92]Thomas Grandits, Simone Pezzuto, Francisco Sahli Costabal, Paris Perdikaris, Thomas Pock, Gernot Plank, Rolf Krause:
Learning Atrial Fiber Orientations and Conductivity Tensors from Intracardiac Maps Using Physics-Informed Neural Networks. FIMH 2021: 650-658 - [c91]Vladimir Kolmogorov, Thomas Pock:
One-sided Frank-Wolfe algorithms for saddle problems. ICML 2021: 5665-5675 - [i44]Dominik Narnhofer, Alexander Effland, Erich Kobler, Kerstin Hammernik, Florian Knoll, Thomas Pock:
Bayesian Uncertainty Estimation of Learned Variational MRI Reconstruction. CoRR abs/2102.06665 (2021) - [i43]Thomas Grandits, Alexander Effland, Thomas Pock, Rolf Krause, Gernot Plank, Simone Pezzuto:
GEASI: Geodesic-based Earliest Activation Sites Identification in cardiac models. CoRR abs/2102.09962 (2021) - [i42]Thomas Grandits, Simone Pezzuto, Francisco Sahli Costabal, Paris Perdikaris, Thomas Pock, Gernot Plank, Rolf Krause:
Learning atrial fiber orientations and conductivity tensors from intracardiac maps using physics-informed neural networks. CoRR abs/2102.10863 (2021) - 2020
- [j39]Katrin Lasinger, Christoph Vogel, Thomas Pock, Konrad Schindler:
3D Fluid Flow Estimation with Integrated Particle Reconstruction. Int. J. Comput. Vis. 128(4): 1012-1027 (2020) - [j38]Thomas Grandits, Karli Gillette, Aurel Neic, Jason D. Bayer, Edward J. Vigmond, Thomas Pock, Gernot Plank:
An inverse Eikonal method for identifying ventricular activation sequences from epicardial activation maps. J. Comput. Phys. 419: 109700 (2020) - [j37]Joan Bruna, Eldad Haber, Gitta Kutyniok, Thomas Pock, René Vidal:
Special Issue on the Mathematical Foundations of Deep Learning in Imaging Science. J. Math. Imaging Vis. 62(3): 277-278 (2020) - [j36]Alexander Effland, Erich Kobler, Karl Kunisch, Thomas Pock:
Variational Networks: An Optimal Control Approach to Early Stopping Variational Methods for Image Restoration. J. Math. Imaging Vis. 62(3): 396-416 (2020) - [j35]Antonin Chambolle, Martin Holler, Thomas Pock:
A Convex Variational Model for Learning Convolutional Image Atoms from Incomplete Data. J. Math. Imaging Vis. 62(3): 417-444 (2020) - [j34]Antonin Chambolle, Thomas Pock:
Crouzeix-Raviart Approximation of the Total Variation on Simplicial Meshes. J. Math. Imaging Vis. 62(6-7): 872-899 (2020) - [j33]Mahesh Chandra Mukkamala, Peter Ochs, Thomas Pock, Shoham Sabach:
Convex-Concave Backtracking for Inertial Bregman Proximal Gradient Algorithms in Nonconvex Optimization. SIAM J. Math. Data Sci. 2(3): 658-682 (2020) - [j32]Florian Knoll, Kerstin Hammernik, Chi Zhang, Steen Moeller, Thomas Pock, Daniel K. Sodickson, Mehmet Akçakaya:
Deep-Learning Methods for Parallel Magnetic Resonance Imaging Reconstruction: A Survey of the Current Approaches, Trends, and Issues. IEEE Signal Process. Mag. 37(1): 128-140 (2020) - [c90]Christian Sormann, Patrick Knöbelreiter, Andreas Kuhn, Mattia Rossi, Thomas Pock, Friedrich Fraundorfer:
BP-MVSNet: Belief-Propagation-Layers for Multi-View-Stereo. 3DV 2020: 394-403 - [c89]Erich Kobler, Alexander Effland, Karl Kunisch, Thomas Pock:
Total Deep Variation for Linear Inverse Problems. CVPR 2020: 7546-7555 - [c88]Patrick Knöbelreiter, Christian Sormann, Alexander Shekhovtsov, Friedrich Fraundorfer, Thomas Pock:
Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems. CVPR 2020: 7897-7906 - [c87]Christian Kopf, Thomas Pock, Bernhard Blaschitz, Svorad Stolc:
Inline Double Layer Depth Estimation with Transparent Materials. GCPR 2020: 418-431 - [c86]Markus Hofinger, Samuel Rota Bulò, Lorenzo Porzi, Arno Knapitsch, Thomas Pock, Peter Kontschieder:
Improving Optical Flow on a Pyramid Level. ECCV (28) 2020: 770-786 - [c85]Thomas Grandits, Simone Pezzuto, Jolijn M. Lubrecht, Thomas Pock, Gernot Plank, Rolf Krause:
PIEMAP: Personalized Inverse Eikonal Model from Cardiac Electro-Anatomical Maps. M&Ms and EMIDEC/STACOM@MICCAI 2020: 76-86 - [i41]Erich Kobler, Alexander Effland, Karl Kunisch, Thomas Pock:
Total Deep Variation for Linear Inverse Problems. CoRR abs/2001.05005 (2020) - [i40]Patrick Knöbelreiter, Christian Sormann, Alexander Shekhovtsov, Friedrich Fraundorfer, Thomas Pock:
Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems. CoRR abs/2003.06258 (2020) - [i39]Erich Kobler, Alexander Effland, Karl Kunisch, Thomas Pock:
Total Deep Variation: A Stable Regularizer for Inverse Problems. CoRR abs/2006.08789 (2020) - [i38]Christian Sormann, Patrick Knöbelreiter, Andreas Kuhn, Mattia Rossi, Thomas Pock, Friedrich Fraundorfer:
BP-MVSNet: Belief-Propagation-Layers for Multi-View-Stereo. CoRR abs/2010.12436 (2020) - [i37]Thomas Pinetz, Erich Kobler, Thomas Pock, Alexander Effland:
Shared Prior Learning of Energy-Based Models for Image Reconstruction. CoRR abs/2011.06539 (2020)
2010 – 2019
- 2019
- [j31]Alexander Effland, Erich Kobler, Anne Brandenburg, Teresa Klatzer, Leonie Neuhäuser, Michael Hölzel, Jennifer Landsberg, Thomas Pock, Martin Rumpf:
Joint reconstruction and classification of tumor cells and cell interactions in melanoma tissue sections with synthesized training data. Int. J. Comput. Assist. Radiol. Surg. 14(4): 587-599 (2019) - [j30]Antonin Chambolle, Thomas Pock:
Total roto-translational variation. Numerische Mathematik 142(3): 611-666 (2019) - [j29]Peter Ochs, Thomas Pock:
Adaptive FISTA for Nonconvex Optimization. SIAM J. Optim. 29(4): 2482-2503 (2019) - [c84]Patrick Knöbelreiter, Thomas Pock:
Learned Collaborative Stereo Refinement. GCPR 2019: 3-17 - [c83]Thomas Pinetz, Daniel Soukup, Thomas Pock:
On the Estimation of the Wasserstein Distance in Generative Models. GCPR 2019: 156-170 - [c82]Patricia M. Johnson, Matthew J. Muckley, Mary Bruno, Erich Kobler, Kerstin Hammernik, Thomas Pock, Florian Knoll:
Joint Multi-anatomy Training of a Variational Network for Reconstruction of Accelerated Magnetic Resonance Image Acquisitions. MLMIR@MICCAI 2019: 71-79 - [c81]Senanayak Sesh Kumar Karri, Francis R. Bach, Thomas Pock:
Fast Decomposable Submodular Function Minimization using Constrained Total Variation. NeurIPS 2019: 8183-8193 - [c80]Alexander Effland, Erich Kobler, Thomas Pock, Martin Rumpf:
Time Discrete Geodesics in Deep Feature Spaces for Image Morphing. SSVM 2019: 171-182 - [i36]Florian Knoll, Kerstin Hammernik, Chi Zhang, Steen Moeller, Thomas Pock, Daniel K. Sodickson, Mehmet Akçakaya:
Deep Learning Methods for Parallel Magnetic Resonance Image Reconstruction. CoRR abs/1904.01112 (2019) - [i35]Mahesh Chandra Mukkamala, Peter Ochs, Thomas Pock, Shoham Sabach:
Convex-Concave Backtracking for Inertial Bregman Proximal Gradient Algorithms in Non-Convex Optimization. CoRR abs/1904.03537 (2019) - [i34]Senanayak Sesh Kumar Karri, Francis R. Bach, Thomas Pock:
Fast Decomposable Submodular Function Minimization using Constrained Total Variation. CoRR abs/1905.11327 (2019) - [i33]Alexander Effland, Erich Kobler, Karl Kunisch, Thomas Pock:
An Optimal Control Approach to Early Stopping Variational Methods for Image Restoration. CoRR abs/1907.08488 (2019) - [i32]Patrick Knöbelreiter, Christoph Vogel, Thomas Pock:
Self-Supervised Learning for Stereo Reconstruction on Aerial Images. CoRR abs/1907.12446 (2019) - [i31]Patrick Knöbelreiter, Thomas Pock:
Learned Collaborative Stereo Refinement. CoRR abs/1907.13391 (2019) - [i30]Thomas Pinetz, Daniel Soukup, Thomas Pock:
On the estimation of the Wasserstein distance in generative models. CoRR abs/1910.00888 (2019) - [i29]Alexander Effland, Erich Kobler, Thomas Pock, Marko Rajkovic, Martin Rumpf:
Image Morphing in Deep Feature Spaces: Theory and Applications. CoRR abs/1910.12672 (2019) - [i28]Markus Hofinger, Samuel Rota Bulò, Lorenzo Porzi, Arno Knapitsch, Thomas Pock, Peter Kontschieder:
The Five Elements of Flow. CoRR abs/1912.10739 (2019) - 2018
- [j28]Gottfried Munda, Christian Reinbacher, Thomas Pock:
Real-Time Intensity-Image Reconstruction for Event Cameras Using Manifold Regularisation. Int. J. Comput. Vis. 126(12): 1381-1393 (2018) - [j27]Doris Antensteiner, Svorad Stolc, Thomas Pock:
A Review of Depth and Normal Fusion Algorithms. Sensors 18(2): 431 (2018) - [j26]Yura Malitsky, Thomas Pock:
A First-Order Primal-Dual Algorithm with Linesearch. SIAM J. Optim. 28(1): 411-432 (2018) - [c79]Christoph Vogel, Patrick Knöbelreiter, Thomas Pock:
Learning Energy Based Inpainting for Optical Flow. ACCV (6) 2018: 340-356 - [c78]Alexander Effland, Michael Hölzel, Teresa Klatzer, Erich Kobler, Jennifer Landsberg, Leonie Neuhäuser, Thomas Pock, Martin Rumpf:
Variational Networks for Joint Image Reconstruction and Classification of Tumor Immune Cell Interactions in Melanoma Tissue Sections. Bildverarbeitung für die Medizin 2018: 334-340 - [c77]Katrin Lasinger, Christoph Vogel, Thomas Pock, Konrad Schindler:
3D Fluid Flow Estimation with Integrated Particle Reconstruction. GCPR 2018: 315-332 - [c76]Erich Kobler, Matthew J. Muckley, Baiyu Chen, Florian Knoll, Kerstin Hammernik, Thomas Pock, Daniel K. Sodickson, Ricardo Otazo:
Variational Deep Learning for Low-Dose Computed Tomography. ICASSP 2018: 6687-6691 - [c75]Doris Antensteiner, Svorad Stolc, Thomas Pock:
Variational Fusion of Light Field and Photometric Stereo for Precise 3D Sensing within a Multi-Line Scan Framework. ICPR 2018: 1036-1042 - [c74]Patrick Knöbelreiter, Christoph Vogel, Thomas Pock:
Self-Supervised Learning for Stereo Reconstruction on Aerial Images. IGARSS 2018: 4379-4382 - [i27]Markus Hofinger, Thomas Pock, Thomas Moosbrugger:
Robust Deformation Estimation in Wood-Composite Materials using Variational Optical Flow. CoRR abs/1802.04546 (2018) - [i26]Katrin Lasinger, Christoph Vogel, Thomas Pock, Konrad Schindler:
Variational 3D-PIV with Sparse Descriptors. CoRR abs/1804.02872 (2018) - [i25]Katrin Lasinger, Christoph Vogel, Thomas Pock, Konrad Schindler:
3D Fluid Flow Estimation with Integrated Particle Reconstruction. CoRR abs/1804.03037 (2018) - [i24]Christoph Vogel, Patrick Knöbelreiter, Thomas Pock:
Learning Energy Based Inpainting for Optical Flow. CoRR abs/1811.03721 (2018) - 2017
- [j25]Tuomo Valkonen, Thomas Pock:
Acceleration of the PDHGM on Partially Strongly Convex Functions. J. Math. Imaging Vis. 59(3): 394-414 (2017) - [j24]Yunjin Chen, Thomas Pock:
Trainable Nonlinear Reaction Diffusion: A Flexible Framework for Fast and Effective Image Restoration. IEEE Trans. Pattern Anal. Mach. Intell. 39(6): 1256-1272 (2017) - [c73]Kerstin Hammernik, Tobias Würfl, Thomas Pock, Andreas K. Maier:
A Deep Learning Architecture for Limited-Angle Computed Tomography Reconstruction. Bildverarbeitung für die Medizin 2017: 92-97 - [c72]Audrey Richard, Christoph Vogel, Maros Blaha, Thomas Pock, Konrad Schindler:
Semantic 3D Reconstruction with Finite Element Bases. BMVC 2017 - [c71]Patrick Knöbelreiter, Christian Reinbacher, Alexander Shekhovtsov, Thomas Pock:
End-to-End Training of Hybrid CNN-CRF Models for Stereo. CVPR 2017: 1456-1465 - [c70]Teresa Klatzer, Daniel Soukup, Erich Kobler, Kerstin Hammernik, Thomas Pock:
Trainable Regularization for Multi-frame Superresolution. GCPR 2017: 90-100 - [c69]Christoph Vogel, Thomas Pock:
A Primal Dual Network for Low-Level Vision Problems. GCPR 2017: 189-202 - [c68]Erich Kobler, Teresa Klatzer, Kerstin Hammernik, Thomas Pock:
Variational Networks: Connecting Variational Methods and Deep Learning. GCPR 2017: 281-293 - [c67]Gottfried Munda, Alexander Shekhovtsov, Patrick Knöbelreiter, Thomas Pock:
Scalable Full Flow with Learned Binary Descriptors. GCPR 2017: 321-332 - [c66]Doris Antensteiner, Svorad Stolc, Kristián Valentín, Bernhard Blaschitz, Reinhold Huber-Mörk, Thomas Pock:
High-Precision 3D Sensing with Hybrid Light Field & Photometric Stereo Approach in Multi-Line Scan Framework. IRIACV 2017: 52-60 - [c65]Thomas Grandits, Thomas Pock:
Optimizing Wavelet Bases for Sparser Representations. EMMCVPR 2017: 249-262 - [c64]Christian Reinbacher, Gottfried Munda, Thomas Pock:
Real-time panoramic tracking for event cameras. ICCP 2017: 106-114 - [c63]Stefan Heber, Wei Yu, Thomas Pock:
Neural EPI-Volume Networks for Shape from Light Field. ICCV 2017: 2271-2279 - [i23]Christian Reinbacher, Gottfried Munda, Thomas Pock:
Real-Time Panoramic Tracking for Event Cameras. CoRR abs/1703.05161 (2017) - [i22]Kerstin Hammernik, Teresa Klatzer, Erich Kobler, Michael P. Recht, Daniel K. Sodickson, Thomas Pock, Florian Knoll:
Learning a Variational Network for Reconstruction of Accelerated MRI Data. CoRR abs/1704.00447 (2017) - [i21]Gottfried Munda, Alexander Shekhovtsov, Patrick Knöbelreiter, Thomas Pock:
Scalable Full Flow with Learned Binary Descriptors. CoRR abs/1707.06427 (2017) - [i20]Audrey Richard, Christoph Vogel, Maros Blaha, Thomas Pock, Konrad Schindler:
Semantic 3D Reconstruction with Finite Element Bases. CoRR abs/1710.01749 (2017) - 2016
- [j23]Antonin Chambolle, Thomas Pock:
An introduction to continuous optimization for imaging. Acta Numer. 25: 161-319 (2016) - [j22]Peter Ochs, René Ranftl, Thomas Brox, Thomas Pock:
Techniques for Gradient-Based Bilevel Optimization with Non-smooth Lower Level Problems. J. Math. Imaging Vis. 56(2): 175-194 (2016) - [j21]Antonin Chambolle, Thomas Pock:
On the ergodic convergence rates of a first-order primal-dual algorithm. Math. Program. 159(1-2): 253-287 (2016) - [j20]Vladimir Kolmogorov, Thomas Pock, Michal Rolínek:
Total Variation on a Tree. SIAM J. Imaging Sci. 9(2): 605-636 (2016) - [j19]Thomas Pock, Shoham Sabach:
Inertial Proximal Alternating Linearized Minimization (iPALM) for Nonconvex and Nonsmooth Problems. SIAM J. Imaging Sci. 9(4): 1756-1787 (2016) - [c62]Stefan Heber, Wei Yu, Thomas Pock:
U-shaped Networks for Shape from Light Field. BMVC 2016 - [c61]Christian Reinbacher, Gottfried Graber, Thomas Pock:
Real-Time Intensity-Image Reconstruction for Event Cameras Using Manifold Regularisation. BMVC 2016 - [c60]Maros Blaha, Christoph Vogel, Audrey Richard, Jan Dirk Wegner, Thomas Pock, Konrad Schindler:
Large-Scale Semantic 3D Reconstruction: An Adaptive Multi-resolution Model for Multi-class Volumetric Labeling. CVPR 2016: 3176-3184 - [c59]Stefan Heber, Thomas Pock:
Convolutional Networks for Shape from Light Field. CVPR 2016: 3746-3754 - [c58]Teresa Klatzer, Kerstin Hammernik, Patrick Knöbelreiter, Thomas Pock:
Learning joint demosaicing and denoising based on sequential energy minimization. ICCP 2016: 1-11 - [i19]Alexander Shekhovtsov, Christian Reinbacher, Gottfried Graber, Thomas Pock:
Solving Dense Image Matching in Real-Time using Discrete-Continuous Optimization. CoRR abs/1601.06274 (2016) - [i18]Christian Reinbacher, Gottfried Graber, Thomas Pock:
Real-Time Intensity-Image Reconstruction for Event Cameras Using Manifold Regularisation. CoRR abs/1607.06283 (2016) - [i17]Patrick Knöbelreiter, Christian Reinbacher, Alexander Shekhovtsov, Thomas Pock:
End-to-End Training of Hybrid CNN-CRF Models for Stereo. CoRR abs/1611.10229 (2016) - [i16]Christine Guillemot, Gerlind Plonka-Hoch, Thomas Pock, Joachim Weickert:
Inpainting-Based Image Compression (Dagstuhl Seminar 16462). Dagstuhl Reports 6(11): 90-107 (2016) - 2015
- [j18]Dirk A. Lorenz, Thomas Pock:
An Inertial Forward-Backward Algorithm for Monotone Inclusions. J. Math. Imaging Vis. 51(2): 311-325 (2015) - [j17]Arjan Kuijper, Thomas Pock, Kristian Bredies, Horst Bischof:
Guest Editorial: Scale Space and Variational Methods. J. Math. Imaging Vis. 52(1): 1-2 (2015) - [j16]Peter Ochs, Thomas Brox, Thomas Pock:
iPiasco: Inertial Proximal Algorithm for Strongly Convex Optimization. J. Math. Imaging Vis. 53(2): 171-181 (2015) - [j15]Peter Ochs, Alexey Dosovitskiy, Thomas Brox, Thomas Pock:
On Iteratively Reweighted Algorithms for Nonsmooth Nonconvex Optimization in Computer Vision. SIAM J. Imaging Sci. 8(1): 331-372 (2015) - [j14]Kristian Bredies, Thomas Pock, Benedikt Wirth:
A Convex, Lower Semicontinuous Approximation of Euler's Elastica Energy. SIAM J. Math. Anal. 47(1): 566-613 (2015) - [c57]Gernot Riegler, René Ranftl, Matthias Rüther, Thomas Pock, Horst Bischof:
Depth Restoration via Joint Training of a Global Regression Model and CNNs. BMVC 2015: 58.1-58.12 - [c56]Gottfried Graber, Jonathan Balzer, Stefano Soatto, Thomas Pock:
Efficient minimal-surface regularization of perspective depth maps in variational stereo. CVPR 2015: 511-520 - [c55]Yunjin Chen, Wei Yu, Thomas Pock:
On learning optimized reaction diffusion processes for effective image restoration. CVPR 2015: 5261-5269 - [c54]Wei Yu, Stefan Heber, Thomas Pock:
Learning Reaction-Diffusion Models for Image Inpainting. GCPR 2015: 356-367 - [c53]Peter Ochs, René Ranftl, Thomas Brox, Thomas Pock:
Bilevel Optimization with Nonsmooth Lower Level Problems. SSVM 2015: 654-665 - [i15]Vladimir Kolmogorov, Thomas Pock, Michal Rolínek:
Total variation on a tree. CoRR abs/1502.07770 (2015) - [i14]Yunjin Chen, Wei Yu, Thomas Pock:
On learning optimized reaction diffusion processes for effective image restoration. CoRR abs/1503.05768 (2015) - [i13]Yunjin Chen, Thomas Pock:
Trainable Nonlinear Reaction Diffusion: A Flexible Framework for Fast and Effective Image Restoration. CoRR abs/1508.02848 (2015) - [i12]Tuomo Valkonen, Thomas Pock:
Acceleration of the PDHGM on strongly convex subspaces. CoRR abs/1511.06566 (2015) - 2014
- [j13]Peter Ochs, Yunjin Chen, Thomas Brox, Thomas Pock:
iPiano: Inertial Proximal Algorithm for Nonconvex Optimization. SIAM J. Imaging Sci. 7(2): 1388-1419 (2014) - [j12]Yunjin Chen, WenSen Feng, René Ranftl, Hong Qiao, Thomas Pock:
A Higher-Order MRF Based Variational Model for Multiplicative Noise Reduction. IEEE Signal Process. Lett. 21(11): 1370-1374 (2014) - [j11]Yunjin Chen, René Ranftl, Thomas Pock:
Insights Into Analysis Operator Learning: From Patch-Based Sparse Models to Higher Order MRFs. IEEE Trans. Image Process. 23(3): 1060-1072 (2014) - [c52]Stefan Heber, Thomas Pock:
Scene Flow Estimation from Light Fields via the Preconditioned Primal-Dual Algorithm. GCPR 2014: 3-14 - [c51]René Ranftl, Thomas Pock:
A Deep Variational Model for Image Segmentation. GCPR 2014: 107-118 - [c50]René Ranftl, Kristian Bredies, Thomas Pock:
Non-local Total Generalized Variation for Optical Flow Estimation. ECCV (1) 2014: 439-454 - [c49]Stefan Heber, Thomas Pock:
Shape from Light Field Meets Robust PCA. ECCV (6) 2014: 751-767 - [e3]Andrés Bruhn, Thomas Pock, Xue-Cheng Tai:
Efficient Algorithms for Global Optimization Methods in Computer Vision - International Dagstuhl Seminar, Dagstuhl Castle, Germany, November 20-25, 2011, Revised Selected Papers. Lecture Notes in Computer Science 8293, Springer 2014, ISBN 978-3-642-54773-7 [contents] - [i11]Yunjin Chen, René Ranftl, Thomas Pock:
Insights into analysis operator learning: From patch-based sparse models to higher-order MRFs. CoRR abs/1401.2804 (2014) - [i10]Yunjin Chen, Thomas Pock, Horst Bischof:
Learning ℓ1-based analysis and synthesis sparsity priors using bi-level optimization. CoRR abs/1401.4105 (2014) - [i9]Yunjin Chen, Thomas Pock, René Ranftl, Horst Bischof:
Revisiting loss-specific training of filter-based MRFs for image restoration. CoRR abs/1401.4107 (2014) - [i8]Yunjin Chen, René Ranftl, Thomas Pock:
A bi-level view of inpainting - based image compression. CoRR abs/1401.4112 (2014) - [i7]Dirk A. Lorenz, Thomas Pock:
An accelerated forward-backward algorithm for monotone inclusions. CoRR abs/1403.3522 (2014) - [i6]Peter Ochs, Yunjin Chen, Thomas Brox, Thomas Pock:
iPiano: Inertial Proximal Algorithm for Non-Convex Optimization. CoRR abs/1404.4805 (2014) - [i5]Yunjin Chen, WenSen Feng, René Ranftl, Hong Qiao, Thomas Pock:
A higher-order MRF based variational model for multiplicative noise reduction. CoRR abs/1404.5344 (2014) - [i4]Wei Yu, Thomas Pock:
A Comparison of First-order Algorithms for Machine Learning. CoRR abs/1404.6674 (2014) - 2013
- [j10]Antonin Chambolle, Michael Hintermüller, Thomas Pock, Christoph Schnörr, Gabriele Steidl:
Guest Editorial: Variational Models, Convex Analysis and Numerical Optimization in Mathematical Imaging. J. Math. Imaging Vis. 47(3): 165-166 (2013) - [j9]Kristian Bredies, Thomas Pock, Benedikt Wirth:
Convex Relaxation of a Class of Vertex Penalizing Functionals. J. Math. Imaging Vis. 47(3): 278-302 (2013) - [j8]Karl Kunisch, Thomas Pock:
A Bilevel Optimization Approach for Parameter Learning in Variational Models. SIAM J. Imaging Sci. 6(2): 938-983 (2013) - [c48]Peter Ochs, Alexey Dosovitskiy, Thomas Brox, Thomas Pock:
An Iterated L1 Algorithm for Non-smooth Non-convex Optimization in Computer Vision. CVPR 2013: 1759-1766 - [c47]Yunjin Chen, Thomas Pock, René Ranftl, Horst Bischof:
Revisiting Loss-Specific Training of Filter-Based MRFs for Image Restoration. GCPR 2013: 271-281 - [c46]Stefan Heber, René Ranftl, Thomas Pock:
Variational Shape from Light Field. EMMCVPR 2013: 66-79 - [c45]René Ranftl, Thomas Pock, Horst Bischof:
Minimizing TGV-Based Variational Models with Non-convex Data Terms. SSVM 2013: 282-293 - [e2]Arjan Kuijper, Kristian Bredies, Thomas Pock, Horst Bischof:
Scale Space and Variational Methods in Computer Vision - 4th International Conference, SSVM 2013, Schloss Seggau, Leibnitz, Austria, June 2-6, 2013. Proceedings. Lecture Notes in Computer Science 7893, Springer 2013, ISBN 978-3-642-38266-6 [contents] - [i3]Gernot Riegler, Thomas Pock, Werner Pötzi, Astrid Veronig:
Filament and Flare Detection in Hα image sequences. CoRR abs/1304.7132 (2013) - [i2]Peter Innerhofer, Thomas Pock:
A Convex Approach for Image Hallucination. CoRR abs/1304.7153 (2013) - 2012
- [j7]Antonin Chambolle, Daniel Cremers, Thomas Pock:
A Convex Approach to Minimal Partitions. SIAM J. Imaging Sci. 5(4): 1113-1158 (2012) - [c44]Andreas Wendel, Michael Maurer, Gottfried Graber, Thomas Pock, Horst Bischof:
Dense reconstruction on-the-fly. CVPR 2012: 1450-1457 - [c43]Markus Unger, Manuel Werlberger, Thomas Pock, Horst Bischof:
Joint motion estimation and segmentation of complex scenes with label costs and occlusion modeling. CVPR 2012: 1878-1885 - [c42]Stefan Heber, René Ranftl, Thomas Pock:
Approximate Envelope Minimization for Curvature Regularity. ECCV Workshops (3) 2012: 283-292 - [c41]René Ranftl, Stefan Gehrig, Thomas Pock, Horst Bischof:
Pushing the limits of stereo using variational stereo estimation. Intelligent Vehicles Symposium 2012: 401-407 - [e1]Axel Pinz, Thomas Pock, Horst Bischof, Franz Leberl:
Pattern Recognition - Joint 34th DAGM and 36th OAGM Symposium, Graz, Austria, August 28-31, 2012. Proceedings. Lecture Notes in Computer Science 7476, Springer 2012, ISBN 978-3-642-32716-2 [contents] - 2011
- [j6]Antonin Chambolle, Thomas Pock:
A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging. J. Math. Imaging Vis. 40(1): 120-145 (2011) - [c40]Thomas Pock, Lukas Zebedin, Horst Bischof:
TGV-Fusion. Rainbow of Computer Science 2011: 245-258 - [c39]Markus Unger, Thomas Pock, Horst Bischof:
Global Relabeling for Continuous Optimization in Binary Image Segmentation. EMMCVPR 2011: 104-117 - [c38]Manuel Werlberger, Thomas Pock, Markus Unger, Horst Bischof:
Optical Flow Guided TV-L1 Video Interpolation and Restoration. EMMCVPR 2011: 273-286 - [c37]Thomas Pock, Antonin Chambolle:
Diagonal preconditioning for first order primal-dual algorithms in convex optimization. ICCV 2011: 1762-1769 - [c36]Gottfried Graber, Thomas Pock, Horst Bischof:
Online 3D reconstruction using convex optimization. ICCV Workshops 2011: 708-711 - [c35]Manuel Werlberger, Markus Unger, Thomas Pock, Horst Bischof:
Efficient Minimization of the Non-local Potts Model. SSVM 2011: 314-325 - [i1]Andrés Bruhn, Thomas Pock, Xue-Cheng Tai:
Efficient Algorithms for Global Optimisation Methods in Computer Vision (Dagstuhl Seminar 11471). Dagstuhl Reports 1(11): 66-90 (2011) - 2010
- [j5]Franz Leberl, Horst Bischof, Thomas Pock, Arnold Irschara, Stefan Kluckner:
Aerial Computer Vision for a 3D Virtual Habitat. Computer 43(6): 24-31 (2010) - [j4]Christian Bauer, Thomas Pock, Erich Sorantin, Horst Bischof, Reinhard Beichel:
Segmentation of interwoven 3d tubular tree structures utilizing shape priors and graph cuts. Medical Image Anal. 14(2): 172-184 (2010) - [j3]Kristian Bredies, Karl Kunisch, Thomas Pock:
Total Generalized Variation. SIAM J. Imaging Sci. 3(3): 492-526 (2010) - [j2]Thomas Pock, Daniel Cremers, Horst Bischof, Antonin Chambolle:
Global Solutions of Variational Models with Convex Regularization. SIAM J. Imaging Sci. 3(4): 1122-1145 (2010) - [c34]Jakob Santner, Thomas Pock, Horst Bischof:
Interactive Multi-label Segmentation. ACCV (1) 2010: 397-410 - [c33]Jakob Santner, Christian Leistner, Amir Saffari, Thomas Pock, Horst Bischof:
PROST: Parallel robust online simple tracking. CVPR 2010: 723-730 - [c32]Manuel Werlberger, Thomas Pock, Horst Bischof:
Motion estimation with non-local total variation regularization. CVPR 2010: 2464-2471 - [c31]Christian Reinbacher, Thomas Pock, Christian Bauer, Horst Bischof:
Variational segmentation of elongated volumetric structures. CVPR 2010: 3177-3184 - [c30]Amir Saffari, Martin Godec, Thomas Pock, Christian Leistner, Horst Bischof:
Online multi-class LPBoost. CVPR 2010: 3570-3577 - [c29]Stefan Kluckner, Thomas Pock, Horst Bischof:
Exploiting Redundancy for Aerial Image Fusion Using Convex Optimization. DAGM-Symposium 2010: 303-312 - [c28]Markus Unger, Thomas Pock, Manuel Werlberger, Horst Bischof:
A Convex Approach for Variational Super-Resolution. DAGM-Symposium 2010: 313-322 - [c27]Kalin Kolev, Thomas Pock, Daniel Cremers:
Anisotropic Minimal Surfaces Integrating Photoconsistency and Normal Information for Multiview Stereo. ECCV (3) 2010: 538-551 - [c26]Sasa Grbic, Martin Urschler, Thomas Pock, Horst Bischof:
Optical flow based deformable volume registration using a novel second-order regularization prior. Medical Imaging: Image Processing 2010: 76232R
2000 – 2009
- 2009
- [c25]Jakob Santner, Markus Unger, Thomas Pock, Christian Leistner, Amir Saffari, Horst Bischof:
Interactive Texture Segmentation using Random Forests and Total Variation. BMVC 2009: 1-12 - [c24]Manuel Werlberger, Werner Trobin, Thomas Pock, Andreas Wedel, Daniel Cremers, Horst Bischof:
Anisotropic Huber-L1 Optical Flow. BMVC 2009: 1-11 - [c23]Thomas Pock, Antonin Chambolle, Daniel Cremers, Horst Bischof:
A convex relaxation approach for computing minimal partitions. CVPR 2009: 810-817 - [c22]Dennis Mitzel, Thomas Pock, Thomas Schoenemann, Daniel Cremers:
Video Super Resolution Using Duality Based TV-L1 Optical Flow. DAGM-Symposium 2009: 432-441 - [c21]Markus Unger, Thomas Mauthner, Thomas Pock, Horst Bischof:
Tracking as Segmentation of Spatial-Temporal Volumes by Anisotropic Weighted TV. EMMCVPR 2009: 193-206 - [c20]Thomas Pock, Daniel Cremers, Horst Bischof, Antonin Chambolle:
An algorithm for minimizing the Mumford-Shah functional. ICCV 2009: 1133-1140 - [c19]Frank Steinbrücker, Thomas Pock, Daniel Cremers:
Large displacement optical flow computation withoutwarping. ICCV 2009: 1609-1614 - [c18]Andreas Wedel, Daniel Cremers, Thomas Pock, Horst Bischof:
Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009: 1663-1668 - [c17]Markus Unger, Thomas Pock, Markus Grabner, Andreas Klaus, Horst Bischof:
A Variational Approach to Semiautomatic Generation of Digital Terrain Models. ISVC (2) 2009: 1119-1130 - [c16]Manuel Werlberger, Thomas Pock, Markus Unger, Horst Bischof:
A Variational Model for Interactive Shape Prior Segmentation and Real-Time Tracking. SSVM 2009: 200-211 - [c15]Anita Sellent, Martin Eisemann, Bastian Goldlücke, Thomas Pock, Daniel Cremers, Marcus A. Magnor:
Variational Optical Flow from Alternate Exposure Images. VMV 2009: 135-144 - [c14]Frank Steinbrücker, Thomas Pock, Daniel Cremers:
Advanced Data Terms for Variational Optic Flow Estimation. VMV 2009: 155-164 - 2008
- [c13]Markus Unger, Thomas Pock, Werner Trobin, Daniel Cremers, Horst Bischof:
TVSeg - Interactive Total Variation Based Image Segmentation. BMVC 2008: 1-10 - [c12]Thomas Pock, Markus Unger, Daniel Cremers, Horst Bischof:
Fast and exact solution of Total Variation models on the GPU. CVPR Workshops 2008: 1-8 - [c11]Werner Trobin, Thomas Pock, Daniel Cremers, Horst Bischof:
An Unbiased Second-Order Prior for High-Accuracy Motion Estimation. DAGM-Symposium 2008: 396-405 - [c10]Andreas Wedel, Thomas Pock, Christopher Zach, Horst Bischof, Daniel Cremers:
An Improved Algorithm for TV-L 1 Optical Flow. Statistical and Geometrical Approaches to Visual Motion Analysis 2008: 23-45 - [c9]Werner Trobin, Thomas Pock, Daniel Cremers, Horst Bischof:
Continuous Energy Minimization Via Repeated Binary Fusion. ECCV (4) 2008: 677-690 - [c8]Thomas Pock, Thomas Schoenemann, Gottfried Graber, Horst Bischof, Daniel Cremers:
A Convex Formulation of Continuous Multi-label Problems. ECCV (3) 2008: 792-805 - 2007
- [j1]Thomas Pock, Michael Pock, Horst Bischof:
Algorithmic Differentiation: Application to Variational Problems in Computer Vision. IEEE Trans. Pattern Anal. Mach. Intell. 29(7): 1180-1193 (2007) - [c7]Thomas Pock, Christopher Zach, Horst Bischof:
Mumford-Shah Meets Stereo: Integration of Weak Depth Hypotheses. CVPR 2007 - [c6]Christopher Zach, Thomas Pock, Horst Bischof:
A Duality Based Approach for Realtime TV-L1 Optical Flow. DAGM-Symposium 2007: 214-223 - [c5]Christopher Zach, Thomas Pock, Horst Bischof:
A Globally Optimal Algorithm for Robust TV-L1 Range Image Integration. ICCV 2007: 1-8 - [c4]Thomas Pock, Martin Urschler, Christopher Zach, Reinhard Beichel, Horst Bischof:
A Duality Based Algorithm for TV- L 1-Optical-Flow Image Registration. MICCAI (2) 2007: 511-518 - 2006
- [c3]Thomas Pock, Horst Bischof:
A Probabilistic Multi-phase Model for Variational Image Segmentation. DAGM-Symposium 2006: 71-80 - 2005
- [c2]Thomas Pock, Reinhard Beichel, Horst Bischof:
A Novel Robust Tube Detection Filter for 3D Centerline Extraction. SCIA 2005: 481-490 - 2004
- [c1]Reinhard Beichel, Thomas Pock, Christian Janko, Roman B. Zotter, Bernhard Reitinger, Alexander Bornik, Kálmán Palágyi, Erich Sorantin, Georg Werkgartner, Horst Bischof, Milan Sonka:
Liver segment approximation in CT data for surgical resection planning. Medical Imaging: Image Processing 2004
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-07 20:33 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint